1
|
To TA, Phan NTA, Mai BK, Nguyen TV. Controlling the regioselectivity of the bromolactonization reaction in HFIP. Chem Sci 2024; 15:7187-7197. [PMID: 38756818 PMCID: PMC11095382 DOI: 10.1039/d4sc01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
The halolactonization reaction provides rapid access to densely functionalized lactones from unsaturated carboxylic acids. The endo/exo regioselectivity of this cyclization reaction is primarily determined by the electronic stabilization of alkene substituents, thus making it inherently dependent on substrate structures. Therefore this method often affords one type of halolactone regioisomer only. Herein, we introduce a simple and efficient method for regioselectivity-switchable bromolactonization reactions mediated by HFIP solvent. Two sets of reaction conditions were developed, each forming endo-products or exo-products in excellent regioselectivity. A combination of computational and experimental mechanistic studies not only confirmed the crucial role of HFIP, but also revealed the formation of endo-products under kinetic control and exo-products under thermodynamic control. This study paves the way for future work on the use of perfluorinated solvents to dictate reaction outcomes in organic synthesis.
Collapse
Affiliation(s)
- Tuong Anh To
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
| | - Nhu T A Phan
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh Pennsylvania 15260 USA
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
2
|
Zhao MN, Yang ZM, Li LQ. DMF as an amine source: iron-catalyzed cyclization of 2 H-azirines to imidazoles. Chem Commun (Camb) 2024. [PMID: 38258986 DOI: 10.1039/d3cc06147g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A novel method has been developed for the synthesis of 1-methyl-4,5-diaryl-1H-imidazoles through Fe(II)-catalyzed cyclization of 2H-azirines and N,N-dimethylformamide (DMF) as an amine source. This transformation involves the cleavage of C-N and CN double bonds and the construction of new C-N and CN double bonds. The reaction has readily available starting materials, a wide range of substrates and mild reaction conditions. In addition, the reaction also facilitated the convenient synthesis of 1-methyl-2,4,5-triaryl-1H-imidazoles.
Collapse
Affiliation(s)
- Mi-Na Zhao
- College of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi'an, Shaanxi 710100, P. R. China.
| | - Zi-Mo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Lian-Qing Li
- College of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi'an, Shaanxi 710100, P. R. China.
| |
Collapse
|
3
|
Yu R, Hao F, Zhang X, Fang Z, Jin Z, Liu G, Dai G, Wu J. Cobalt-Catalyzed Chemoselective Reduction of N-Heteroaryl Ketones with N, N-Dimethylformamide as a Hydride Source. J Org Chem 2023. [PMID: 37257025 DOI: 10.1021/acs.joc.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A method for chemoselective reduction of 2-pyridyl ketones and related N-heteroaryl compounds catalyzed by cobalt stearate using DMF as a hydride source is developed. The ketone substrate is activated by chelation with cobalt, which makes the present method highly chemoselective. A possible reaction mechanism is proposed on the basis of control experiments.
Collapse
Affiliation(s)
- Rurong Yu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Feiyue Hao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Xinyu Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Zhongbing Fang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Zhengneng Jin
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Guyue Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Guoliang Dai
- School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiashou Wu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| |
Collapse
|
4
|
Zhou X, Liu J, Zhang L, Wang S, Jia X, Fu W, Tang T. Molybdenum oxides catalyzed the
N
,
N
‐dimethylamination of alcohols with
N
,
N
‐dimethylformamide for direct synthesis of tertiary amines. Appl Organomet Chem 2023. [DOI: 10.1002/aoc.7080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
A Brief Review: Advancement in the Synthesis of Amine through the Leuckart Reaction. REACTIONS 2023. [DOI: 10.3390/reactions4010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This review presents a summary of reactions that take place during the “Leuckart-type reaction”. The significance of, as well as recent advancements in, the synthesis of amines through simple and inexpensive methods using readily available raw materials is discussed. This review includes all catalytic and noncatalytic reactions that involve the Leuckart method. Recent studies have shown that at least a quarter of C–N bond-forming reactions in the pharmaceutical industry are occur with the support of reductive amination. Recently, experimental conditions have achieved excellent yields. The “Leuckart-type reaction” is technically associated with Eschweiler–Clarke methylation. Compounds are grouped in accordance with the precept of action. This includes drugs affecting the central nervous system, cardiovascular system and gastrointestinal tract; anticancer drugs, antibiotics, antiviral and antifungal drugs; drugs affecting anxiety; convulsant, biotic, and HIV drugs; and antidiabetic drugs. Therefore, this review supports the development of the Leuckart-type preparation of nitrogenous compounds, as well as their advancement in other areas of human development.
Collapse
|
6
|
Nakamura A, Imamiya A, Ikegami Y, Rao F, Yuguchi H, Miki Y, Maegawa T. Selective synthesis of 3-formylbenzofuran and 3-acylbenzofuran using a chalcone rearrangement strategy. RSC Adv 2022; 12:30426-30431. [PMID: 36337936 PMCID: PMC9593264 DOI: 10.1039/d2ra06080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 12/01/2022] Open
Abstract
We developed a method for highly selective synthesis of two benzofuran isomers, by rearranging and subsequently transforming 2-hydroxychalcones. Depending on the reaction conditions, synthesis of 3-formylbenzofurans, unconventional products, and 3-acylbenzofurans was achieved through cyclized 2,3-dihydrobenzofurans obtained from the rearranged products. The facile synthesis of 3-formylbenzofurans facilitated synthesis of the natural product, puerariafuran, from the corresponding chalcone.
Collapse
Affiliation(s)
- Akira Nakamura
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Akira Imamiya
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Yuichiro Ikegami
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Fei Rao
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Harumi Yuguchi
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Yasuyoshi Miki
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| | - Tomohiro Maegawa
- School of Pharmaceutical Sciences, Kindai University 3-4-1 Kowakae Higashi-osaka Osaka 577-8502 Japan
| |
Collapse
|
7
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
8
|
Luo Z, Wan S, Pan Y, Yao Z, Zhang X, Li B, Li J, Xu L, Fan Q. Metal‐Free Reductive Amination of Ketones with Amines Using Formic Acid as the Reductant under BF
3
⋅ Et
2
O Catalysis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Shanhong Wan
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Zhen Yao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Jiajie Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Qing‐Hua Fan
- Institute of Chemistry Chinese Academy of Sciences and University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
9
|
Muzart J. A Journey from June 2018 to October 2021 with N, N-Dimethylformamide and N, N-Dimethylacetamide as Reactants. Molecules 2021; 26:6374. [PMID: 34770783 PMCID: PMC8587108 DOI: 10.3390/molecules26216374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/01/2023] Open
Abstract
A rich array of reactions occur using N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMAc) as reactants, these two amides being able to deliver their own H, C, N, and O atoms for the synthesis of a variety of compounds. This account highlights the literature published since June 2018, completing previous reviews by the author.
Collapse
Affiliation(s)
- Jacques Muzart
- Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, B.P. 1039, CEDEX 2, 51687 Reims, France
| |
Collapse
|
10
|
Abstract
The Ritter reaction used to be one of the most powerful synthetic tools to functionalize alcohols and nitriles, providing valuable N-alkyl amide products. However, this reaction has not been frequently used in modern organic synthesis due to its employment of strongly acidic and harsh reaction conditions, which often lead to complicated side reactions. Herein, we report the development of a new method using salts of the tropylium ion to promote the Ritter reaction. This method works well on a range of alcohol and nitrile substrates, giving the corresponding products in good to excellent yields. This reaction protocol is amenable to microwave and continuous flow reactors, offering an attractive opportunity for further applications in organic synthesis.
Collapse
Affiliation(s)
- Son H Doan
- School of Chemistry, University of New South Wales, Sydney, Australia.
| | - Mohanad A Hussein
- School of Chemistry, University of New South Wales, Sydney, Australia.
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, Australia.
| |
Collapse
|
11
|
Pulido-Díaz IT, Serrano-Maldonado A, López-Suárez CC, Méndez-Ocampo PA, Portales-Martínez B, Gutiérrez-Alejandre A, Salas-Martin KP, Guerrero-Ríos I. RhNPs supported on N-functionalized mesoporous silica: effect on catalyst stabilization and catalytic activity. Dalton Trans 2021; 50:3289-3298. [PMID: 33595036 DOI: 10.1039/d0dt04213g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amine and nicotinamide groups grafted on ordered mesoporous silica (OMS) were investigated as stabilizers for RhNPs used as catalysts in the hydrogenation of several substrates, including carbonyl and aryl groups. Supported RhNPs on functionalized OMS were prepared by controlled decomposition of an organometallic precursor of rhodium under dihydrogen pressure. The resulting materials were characterized thoroughly by spectroscopic and physical techniques (FTIR, TGA, BET, SEM, TEM, EDX, XPS) to confirm the formation of spherical rhodium nanoparticles with a narrow size distribution supported on the silica surface. The use of nicotinamide functionalized OMS as a support afforded small RhNPs (2.3 ± 0.3 nm), and their size and shape were maintained after the catalyzed acetophenone hydrogenation. In contrast, amine-functionalized OMS formed RhNP aggregates after the catalytic reaction. The supported RhNPs could selectively reduce alkenyl, carbonyl, aryl and heteroaryl groups and were active in the reductive amination of phenol and morpholine, using a low concentration of the precious metal (0.07-0.18 mol%).
Collapse
Affiliation(s)
- Israel T Pulido-Díaz
- Depto. de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 CDMX, Mexico.
| | - Alejandro Serrano-Maldonado
- Depto. de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 CDMX, Mexico.
| | - Carlos César López-Suárez
- Depto. de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 CDMX, Mexico.
| | - Pedro A Méndez-Ocampo
- Depto. de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 CDMX, Mexico.
| | - Benjamín Portales-Martínez
- CONACYT, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Laboratorio Nacional de Conversión y Almacenamiento de Energía, Instituto Politécnico Nacional, Calzada Legaría 694, Col. Irrigación, Ciudad de México, 11500, Mexico
| | - Aída Gutiérrez-Alejandre
- Depto de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 CDMX, Mexico
| | - Karla P Salas-Martin
- Depto. de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 CDMX, Mexico.
| | - Itzel Guerrero-Ríos
- Depto. de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, 04510 CDMX, Mexico.
| |
Collapse
|
12
|
Zoller B, Stach T, Huy PH. Lewis Base Catalysis Enables the Activation of Alcohols by means of Chloroformates as Phosgene Substitutes. ChemCatChem 2020. [DOI: 10.1002/cctc.202001175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ben Zoller
- Saarland University Organic Chemistry P. O. Box 151150 66041 Saarbrücken Germany
- Current address Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) University Campus E8.1, room 2.29 66123 Saarbrücken Germany
| | - Tanja Stach
- Saarland University Organic Chemistry P. O. Box 151150 66041 Saarbrücken Germany
- Current address: Endotherm GmbH Science Park 2 66123 Saarbrücken Germany
| | - Peter H. Huy
- Saarland University Organic Chemistry P. O. Box 151150 66041 Saarbrücken Germany
- Rostock University Institute for Chemistry Albert-Einstein-Str. 3A 18059 Rostock Germany
| |
Collapse
|