1
|
Zhang F, Chen F, Zhong M, Shen R, Zhao Z, Wei H, Zhang B, Fang J. Imaging of Carbonic Anhydrase Level in Epilepsy with an Environment-Sensitive Fluorescent Probe. Anal Chem 2023; 95:14833-14841. [PMID: 37747928 DOI: 10.1021/acs.analchem.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Carbonic anhydrases (CAs) participate in various physiological and pathological activities by catalyzing the interconversion between carbon dioxide and bicarbonate ions. Under normal circumstances, they guarantee that the relevant biological reactions in our body occur within an appropriate time scale. Abnormal expression or activity alteration of CAs is closely related to the pathogenesis of diverse diseases. This work reports an inhibitor-directed fluorescent probe FMRs-CA for the detection of CAs. Excellent selectivity, favorable biocompatibility, and desirable blood-brain barrier (BBB) penetration endow the probe with the ability to image the fluctuation of CAs in cells and mice. We achieved in situ visualization of the increased CAs in hypoxic cells with this probe. Additionally, probe FMRs-CA was mainly enriched within the liver and gradually metabolized by the liver. With the help of FMRs-CA, the increase of CAs in epileptic mouse brains was revealed first from the perspective of imaging, providing the mechanism connection between abnormal CA expressions and epilepsy.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haopai Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
2
|
Responsive fluorescence enhancement for in vivo Cu(II) monitoring in zebrafish larvae. Biosens Bioelectron 2021; 200:113885. [PMID: 34954569 DOI: 10.1016/j.bios.2021.113885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
Several neurodegenerative diseases are ascribed to disorders caused by the secretion of Cu ions. However, a majority of the current techniques for copper ion detection are restricted to in vivo monitoring and nonspecific interactions. Their methods are limited to the systematic analysis of Cu ions in living organisms. Thus, a synthetic molecular fluorophore, 5-amino 2,3-dihydroquinolinimine (NDQI), has been developed and successfully utilized in in vivo monitoring of the distribution of Cu(II) in zebrafish larvae. The reversible formation of the NDQI-Cu complex allows its use with high metal concentrations and in oxidative stress conditions. The NDQI-directed strategy developed here can quantitatively differentiate cells with different Cu(II) concentrations. Remarkably, dynamic distribution of Cu(II) in the intestine and liver can be observed.
Collapse
|
3
|
Li L, Lin Z, Cheng Y, Tang Y, Zhang Z. A cysteine-triggered fluorogenic donor base on native chemical ligation for tracking H 2S delivery in vivo. Analyst 2021; 146:7374-7378. [PMID: 34816826 DOI: 10.1039/d1an01809d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A hydrogen sulfide (H2S) donor is a fundamental molecular tool used as an exogenous source in biological studies and therapies. However, finding a controllable and visual fluorescent H2S donor is difficult. We report a new H2S donor, HSD560, the H2S release of which is triggered by cysteine. Importantly, the H2S generation is accompanied with enhanced green fluorescence, which could be utilized to track H2S release in cells using microscopy. H2S release from HSD560 undergoes a non-enzymatic native chemical ligation (NCL) process, which provides an accurate match with activated fluorescence and localization of H2S in zebrafish.
Collapse
Affiliation(s)
- Li Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Zhenmei Lin
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yongfang Cheng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yaoping Tang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Ziqian Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|