1
|
Kanti Bera S, Porcheddu A. Pioneering Metal-Free Late-Stage C-H Functionalization Using Acridinium Salt Photocatalysis. Chemistry 2024:e202402809. [PMID: 39136621 DOI: 10.1002/chem.202402809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 10/23/2024]
Abstract
Using organic dyes as photocatalysts is an innovative approach to photocatalytic organic transformations. These dyes offer advantages such as widespread availability, adaptable absorption properties, and diverse chemical structures. Recent progress has led to the development of organic photocatalysts that can utilize visible light to modify chemically inert C-H bonds. These catalysts are sustainable, selective, and versatile, enabling mild reactions, late-stage functionalization, and various transformations in line with green chemistry principles. As catalysts in photoredox chemistry, they contribute to the development of efficient and environmentally friendly synthetic pathways. Acridinium-based organic photocatalysts have proved valuable in late-stage C-H functionalization, enabling transformative reactions under mild conditions. This review emphasizes their innovative features, such as organic frameworks, efficient light absorption properties, and their applications in modifying complex molecules. It provides an overview of recent advancements in the use of acridinium-based organic photocatalysts for late-stage C-H bond functionalization without the need for transition metals, showcasing their potential to expedite the development of new molecules and igniting excitement about the prospects of this research in the field.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| | - Andrea Porcheddu
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| |
Collapse
|
2
|
Iwabuchi S, Morofuji T, Kano N. Synthesis, structure, and alkynylation reactivity of alkynyl-silicate, -germanate, and -stannate. Dalton Trans 2024; 53:10829-10833. [PMID: 38898710 DOI: 10.1039/d4dt01688b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The first anionic pentacoordinated group 14 compounds bearing a phenylethynyl substituent were successfully synthesized and crystallographically characterized. The synthesized ate-type compounds were stable in air, water, and some acids, allowing their application as reagents for the nucleophilic alkynylation of carbon electrophiles.
Collapse
Affiliation(s)
- Shuta Iwabuchi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
3
|
Laze L, Quevedo-Flores B, Bosque I, Gonzalez-Gomez JC. Alkanes in Minisci-Type Reaction under Photocatalytic Conditions with Hydrogen Evolution. Org Lett 2023. [PMID: 37819209 DOI: 10.1021/acs.orglett.3c02619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We report herein a protocol for the selective activation of C(sp3)-H bonds based on the interplay of two readily available organic catalysts and their successful implementation in cross-coupling azaarenes with alkanes. This Minisci-like reaction is promoted by visible light at room temperature and is free from chemical oxidants, metals, and chlorinated solvents. A wide range of substrates are compatible, including some bioactive molecules. Mechanistic studies support a dual catalytic cycle with H2 evolution.
Collapse
Affiliation(s)
- Loris Laze
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| | - Beatriz Quevedo-Flores
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| | - Irene Bosque
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| | - Jose C Gonzalez-Gomez
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| |
Collapse
|
4
|
Zhao Y, Wan Y, Yuan Q, Wei J, Zhang Y. Photocatalytic C-Si Bond Formations Using Pentacoordinate Silylsilicates as Silyl Radical Precursors: Synthetic Tricks Using Old Reagents. Org Lett 2023; 25:1386-1391. [PMID: 36861978 DOI: 10.1021/acs.orglett.3c00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A visible-light-induced photocatalytic C-Si formation strategy has been disclosed by uncovering the reactivity of Martin's spirosilane-derived pentacoordinate silylsilicates as silyl radical precursors. The hydrosilylation of a broad spectrum of alkenes and alkynes, as well as the C-H silylation of heteroarenes, has been demonstrated. Remarkably, Martin's spirosilane was stable and could be recovered via a simple workup process. Furthermore, the reaction proceeded well using water as the solvent or low-energy green LEDs as an alternative energy source.
Collapse
Affiliation(s)
- Yumo Zhao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Wan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qiyang Yuan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Morofuji T, Kurokawa T, Chitose Y, Adachi C, Kano N. Trifluoromethylated thermally activated delayed fluorescence molecule as a versatile photocatalyst for electron-transfer- and energy-transfer-driven reactions. Org Biomol Chem 2022; 20:9600-9603. [PMID: 36412506 DOI: 10.1039/d2ob02055f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we propose that the trifluoromethylated thermally activated delayed fluorescent molecule 4[Cz(CF3)2]IPN is a versatile organic photocatalyst that can be used for electron-transfer-driven reactions requiring a photocatalyst with high oxidizing power and energy-transfer-driven reactions that require an Ir photocatalyst. 4[Cz(CF3)2]IPN was used in radical reactions via electron transfer and dearomative cycloaddition reactions via energy transfer.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Takuma Kurokawa
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Youhei Chitose
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
6
|
Lei CW, Wang XY, Mu BS, Yu JS, Zhou Y, Zhou J. Me 2(CH 2Cl)SiCF 3 Facilitated Tandem Synthesis of Oxasilacycles Featuring a Trifluoromethyl Group. Org Lett 2022; 24:8364-8369. [DOI: 10.1021/acs.orglett.2c03393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chuan-Wen Lei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xi-Yu Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Bo-Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jian Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
7
|
Huang CY, Li J, Li CJ. Photocatalytic C(sp 3) radical generation via C-H, C-C, and C-X bond cleavage. Chem Sci 2022; 13:5465-5504. [PMID: 35694342 PMCID: PMC9116372 DOI: 10.1039/d2sc00202g] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
C(sp3) radicals (R˙) are of broad research interest and synthetic utility. This review collects some of the most recent advancements in photocatalytic R˙ generation and highlights representative examples in this field. Based on the key bond cleavages that generate R˙, these contributions are divided into C–H, C–C, and C–X bond cleavages. A general mechanistic scenario and key R˙-forming steps are presented and discussed in each section. C(sp3) radicals (R˙) are of broad research interest and synthetic utility.![]()
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Jianbin Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
8
|
Li DS, Liu T, Hong Y, Cao CL, Wu J, Deng HP. Stop-Flow Microtubing Reactor-Assisted Visible Light-Induced Hydrogen-Evolution Cross Coupling of Heteroarenes with C(sp 3)–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chen-Lin Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
9
|
Deis T, Forte J, Fensterbank L, Lemière G. Synthesis and Reactivity of Martin's Spirosilane-Derived Chloromethylsilicate. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061767. [PMID: 35335132 PMCID: PMC8956079 DOI: 10.3390/molecules27061767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Pentacoordinate silicon derivatives with a chloromethyl ligand are versatile compounds that are usually obtained from the corresponding tetravalent trialkoxy- or trihalogeno(chloromethyl)silane. We describe herein the synthesis of a chloromethylsilicate bearing two Martin's ligands readily obtained by addition of in situ generated chloromethyllithium to a spirosilane. The reactivity of this new species was evaluated and it has been established that the chloride is displaced by strong nucleophiles such as alkyllithiums and (hetero)aryllithiums. In Lewis acidic conditions, the pentacoordinate silicon species rearranges through a formal insertion of a methylene into one Si-C bond, to form a new tetravalent spirosilane with a six-membered ring. The same kind of rearrangement can be triggered also by addition of a Lewis base. The mechanism of the rearrangement in both conditions has been studied by means of DFT calculations.
Collapse
|
10
|
Corcé V, Ollivier C, Fensterbank L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem Soc Rev 2022; 51:1470-1510. [PMID: 35113115 DOI: 10.1039/d1cs01084k] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.
Collapse
Affiliation(s)
- Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| |
Collapse
|
11
|
Deis T, Maury J, Medici F, Jean M, Forte J, Vanthuyne N, Fensterbank L, Lemière G. Synthesis and Optical Resolution of Configurationally Stable Zwitterionic Pentacoordinate Silicon Derivatives. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thomas Deis
- Institut Parisien de Chimie Moléculaire Sorbonne Université, CNRS 4 Place Jussieu, CC 229 F-75252 Paris Cedex 05 France
| | - Julien Maury
- Institut Parisien de Chimie Moléculaire Sorbonne Université, CNRS 4 Place Jussieu, CC 229 F-75252 Paris Cedex 05 France
| | - Fabrizio Medici
- Institut Parisien de Chimie Moléculaire Sorbonne Université, CNRS 4 Place Jussieu, CC 229 F-75252 Paris Cedex 05 France
| | - Marion Jean
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 F-13397 Marseille Cedex 20 France
| | - Jérémy Forte
- Institut Parisien de Chimie Moléculaire Sorbonne Université, CNRS 4 Place Jussieu, CC 229 F-75252 Paris Cedex 05 France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 F-13397 Marseille Cedex 20 France
| | - Louis Fensterbank
- Institut Parisien de Chimie Moléculaire Sorbonne Université, CNRS 4 Place Jussieu, CC 229 F-75252 Paris Cedex 05 France
| | - Gilles Lemière
- Institut Parisien de Chimie Moléculaire Sorbonne Université, CNRS 4 Place Jussieu, CC 229 F-75252 Paris Cedex 05 France
| |
Collapse
|
12
|
Zhong W, Xu W, Yang Q, Kato T, Liu Y, Maruoka K. A new approach for the copper-catalyzed functionalization of alkyl hydroperoxides with organosilicon compounds via in-situ-generated alkylsilyl peroxides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Kemmochi M, Miyamoto Y, Sumida Y, Ohmiya H. Direct Photoexcitation of Borate Enabling Minisci Reaction. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marin Kemmochi
- Division of Pharmaceutical Science Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Yusuke Miyamoto
- Division of Pharmaceutical Science Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Yuto Sumida
- Division of Pharmaceutical Science Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Science Graduate School of Medical Sciences Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
14
|
Deis T, Maury J, Medici F, Jean M, Forte J, Vanthuyne N, Fensterbank L, Lemière G. Synthesis and Optical Resolution of Configurationally Stable Zwitterionic Pentacoordinate Silicon Derivatives. Angew Chem Int Ed Engl 2021; 61:e202113836. [PMID: 34767686 DOI: 10.1002/anie.202113836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/08/2022]
Abstract
Stereogenic silicon centres in functionalised tetracoordinated organosilanes generally exhibit very high configurational stability under neutral conditions. This stability drops completely when higher coordination states of the silicon centre are reached due to rapid substituent exchange. Herein we describe the synthesis of chiral and neutral pentacoordinate silicon derivatives with high configurational stability. The zwitterionic nature of these air- and water-tolerant species allows for the first time their direct and efficient optical resolution using chiral HPLC techniques. By means of this method, pentacoordinate silicon compounds exhibiting high Si-inversion have been obtained as single enantiomers. A rationalisation of the enantiomerisation pathways has been also carried out using DFT calculations.
Collapse
Affiliation(s)
- Thomas Deis
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 Place Jussieu, CC 229, F-75252, Paris Cedex 05, France
| | - Julien Maury
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 Place Jussieu, CC 229, F-75252, Paris Cedex 05, France
| | - Fabrizio Medici
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 Place Jussieu, CC 229, F-75252, Paris Cedex 05, France
| | - Marion Jean
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, F-13397, Marseille Cedex 20, France
| | - Jérémy Forte
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 Place Jussieu, CC 229, F-75252, Paris Cedex 05, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, F-13397, Marseille Cedex 20, France
| | - Louis Fensterbank
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 Place Jussieu, CC 229, F-75252, Paris Cedex 05, France
| | - Gilles Lemière
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 Place Jussieu, CC 229, F-75252, Paris Cedex 05, France
| |
Collapse
|
15
|
Li J, Huang CY, Han JT, Li CJ. Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings via H2 Release. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianbin Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chia-Yu Huang
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Jing-Tan Han
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
16
|
Sengoku T, Ogawa D, Iwama H, Inuzuka T, Yoda H. A heavy-metal-free desulfonylative Giese-type reaction of benzothiazole sulfones under visible-light conditions. Chem Commun (Camb) 2021; 57:9858-9861. [PMID: 34490858 DOI: 10.1039/d1cc03833h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A visible-light-induced desulfonylative Giese-type reaction has been developed. Essential to the success is the employment of Hantzsch ester to activate benzothiazole sulfones without any heavy-metal additives. Not only benzylic benzothiazole sulfones but also alkyl ones were viable substrates and reacted with electron-deficient alkenes and a propiol amide.
Collapse
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Daichi Ogawa
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Haruka Iwama
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hidemi Yoda
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| |
Collapse
|
17
|
Morofuji T, Matsui Y, Ohno M, Ikarashi G, Kano N. Photocatalytic Giese-Type Reaction with Alkylsilicates Bearing C,O-Bidentate Ligands. Chemistry 2021; 27:6713-6718. [PMID: 33382504 DOI: 10.1002/chem.202005300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 02/02/2023]
Abstract
Herein, a photocatalytic Giese-type reaction with alkylsilicates bearing C,O-bidentate ligands as stable alkyl radical precursors has been reported. The alkylsilicates were prepared in one step from organometallic reagents. Not only primary, secondary, and tertiary alkyl radicals, but also elusive methyl radicals, could be generated by using the present reaction system. The generated radicals were trapped by electron-deficient olefins bearing various functional groups to give the desired alkyl adducts. The silicon byproduct can be recovered after the photoreaction. The radical generation process was investigated by theoretical calculations, which provided an insight into the facile generation of methyl radicals from methylsilicate bearing C,O-bidentate ligands.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| | - Yu Matsui
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| | - Misa Ohno
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| | - Gun Ikarashi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan.,Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| |
Collapse
|
18
|
Lemière G, Millanvois A, Ollivier C, Fensterbank L. A Parisian Vision of the Chemistry of Hypercoordinated Silicon Derivatives. CHEM REC 2021; 21:1119-1129. [PMID: 33735507 DOI: 10.1002/tcr.202100049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Less than ten years of acquaintance with hypercoordinated silicon derivatives in our lab is described in this account. Martin's spirosilane derivatives open new opportunities as ligands and as agents for the activation of small molecules and bis-catecholato silicates have proven to be exquisite radical precursors in photoredox conditions for broad synthetic applications.
Collapse
Affiliation(s)
- Gilles Lemière
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris
| | - Alexandre Millanvois
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris
| | - Cyril Ollivier
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris
| | - Louis Fensterbank
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, 4 place Jussieu, 75005, Paris
| |
Collapse
|
19
|
Ariga K, Shionoya M. Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200362] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Le Saux E, Ma D, Bonilla P, Holden CM, Lustosa D, Melchiorre P. A General Organocatalytic System for Enantioselective Radical Conjugate Additions to Enals. Angew Chem Int Ed Engl 2021; 60:5357-5362. [PMID: 33283919 PMCID: PMC7986922 DOI: 10.1002/anie.202014876] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/04/2020] [Indexed: 11/28/2022]
Abstract
Herein, we report a general iminium ion-based catalytic method for the enantioselective conjugate addition of carbon-centered radicals to aliphatic and aromatic enals. The process uses an organic photoredox catalyst, which absorbs blue light to generate radicals from stable precursors, in combination with a chiral amine catalyst, which secures a consistently high level of stereoselectivity. The generality of this catalytic platform is demonstrated by the stereoselective interception of a wide variety of radicals, including non-stabilized primary ones which are generally difficult to engage in asymmetric processes. The system also served to develop organocatalytic cascade reactions that combine an iminium-ion-based radical trap with an enamine-mediated step, affording stereochemically dense chiral products in one-step.
Collapse
Affiliation(s)
- Emilien Le Saux
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| | - Dengke Ma
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| | - Pablo Bonilla
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| | - Catherine M. Holden
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| | - Danilo Lustosa
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| | - Paolo Melchiorre
- ICREA-Passeig Lluís Companys 2308010BarcelonaSpain
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and TechnologyAvenida Països Catalans 1643007TarragonaSpain
| |
Collapse
|
21
|
Lee W, Jung S, Kim M, Hong S. Site-Selective Direct C–H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone. J Am Chem Soc 2021; 143:3003-3012. [DOI: 10.1021/jacs.1c00549] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wooseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Minseok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
22
|
Le Saux E, Ma D, Bonilla P, Holden CM, Lustosa D, Melchiorre P. A General Organocatalytic System for Enantioselective Radical Conjugate Additions to Enals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014876] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emilien Le Saux
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Dengke Ma
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Pablo Bonilla
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Catherine M. Holden
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Danilo Lustosa
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| | - Paolo Melchiorre
- ICREA- Passeig Lluís Companys 23 08010 Barcelona Spain
- ICIQ—Institute of Chemical Research of Catalonia the Barcelona Institute of Science and Technology Avenida Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
23
|
Bryden MA, Zysman-Colman E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem Soc Rev 2021; 50:7587-7680. [PMID: 34002736 DOI: 10.1039/d1cs00198a] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic compounds that show Thermally Activated Delayed Fluorescence (TADF) have become wildly popular as next-generation emitters in organic light emitting diodes (OLEDs). Since 2016, a subset of these have found increasing use as photocatalysts. This review comprehensively highlights their potential by documenting the diversity of the reactions where an organic TADF photocatalyst can be used in lieu of a noble metal complex photocatalyst. Beyond the small number of TADF photocatalysts that have been used to date, the analysis conducted within this review reveals the wider potential of organic donor-acceptor TADF compounds as photocatalysts. A discussion of the benefits of compounds showing TADF for photocatalysis is presented, which paints a picture of a very promising future for organic photocatalyst development.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|
24
|
Posz JM, Harruff SR, Van Hoveln R. Practical and scalable synthesis of bench-stable organofluorosilicate salts. Chem Commun (Camb) 2020; 56:13233-13236. [PMID: 33030185 DOI: 10.1039/d0cc05400c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silanes have enjoyed significant success as synthetic tools in the last few decades. In many of the reactions that use silanes, a pentacoordinate silicate is proposed as the reactive intermediate. Despite this, there is no general method to synthesize pentacoordinate fluorosilicates and use them as reagents instead of organo- or alkoxysilanes. Herein, we report the first practical synthesis of organotetrafluorosilicates. The method is tolerant of a number of different functional groups including electrophiles with preferential attack of the fluoride on the silane rather than the electrophile. This transformaton is generally high yielding, even at the mole scale. Furthermore, we demonstrate that organotetrafluorosilicates are both more reactive than the corresponding trialkoxysilanes and more stable under solvolytic conditions. Organotetrafluorosilicates can be used as substrates for a variety of coupling reactions, oxidations, and radical reactions. Overall, organotetrafluorosilicates represent a new platform on which to develop challenging transformations.
Collapse
Affiliation(s)
- Jarett M Posz
- Department of Chemistry and Physics, Indiana State University, 600 Chestnut Street, Terre Haute, Indiana 47809, USA.
| | | | | |
Collapse
|