1
|
Samanta S, Sengupta S, Biswas S, Ghosh S, Barman S, Dey A. Iron Dioxygen Adduct Formed during Electrochemical Oxygen Reduction by Iron Porphyrins Shows Catalytic Heme Dioxygenase Reactivity. J Am Chem Soc 2023; 145:26477-26486. [PMID: 37993986 DOI: 10.1021/jacs.3c10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Heme dioxygenases oxidize the indole ring of tryptophan to kynurenine which is the first step in the biosynthesis of several important biomolecules like NAD, xanthurenic acid, and picolinic acid. A ferrous heme dioxygen adduct (or FeIII-O2•-) is the oxidant, and both the atoms of O2 are inserted in the product and its catalytic function has been difficult to emulate as it is complicated by competing rapid reactions like auto-oxidation and/or formation of the μ-oxo dimer. In situ resonance Raman spectroscopy technique, SERRS-RDE, is used to probe the species accumulated during electrochemical ORR catalyzed by site-isolated imidazole-bound iron porphyrin installed on a self-assembled monolayer covered electrode. These in situ SERRS-RDE data using labeled O2 show that indeed a FeIII-O2•- species accumulate on the electrode during ORR between -0.05 and -0.30 V versus Ag/AgCl (satd. KCl) and is reduced by proton coupled electron transfer to a FeIII-OOH species which, on the other hand, builds up on the electrode between -0.20 and -0.40 V versus Ag/AgCl (satd. KCl). This FeIII-OOH species then gives way to a FeIV═O species, which accumulates at -0.50 V versus Ag/AgCl (satd. KCl). When 2,3-dimethylindole is present in the solution and the applied potential is held in the range where FeIII-O2•- species accumulate, it gets oxidized to N-(2-acetylphenyl)acetamide retaining both the oxygens from O2 mimicking the reaction of heme dioxygenases. Turnover numbers more than 104 are recorded, establishing this imidazole-bound ferrous porphyrin as a functional model of heme dioxygenases.
Collapse
Affiliation(s)
- Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Srijan Sengupta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Saptarshi Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sucheta Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sudip Barman
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
2
|
Jana S, De P, Dey C, Dey SG, Dey A, Gupta SS. Highly regioselective oxidation of C-H bonds in water using hydrogen peroxide by a cytochrome P450 mimicking iron complex. Chem Sci 2023; 14:10515-10523. [PMID: 37799989 PMCID: PMC10548533 DOI: 10.1039/d3sc03495j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
Cytochrome P450, one of nature's oxidative workhorses, catalyzes the oxidation of C-H bonds in complex biological settings. Extensive research has been conducted over the past five decades to develop a fully functional mimic that activates O2 or H2O2 in water to oxidize strong C-H bonds. We report the first example of a synthetic iron complex that functionally mimics cytochrome P450 in 100% water using H2O2 as the oxidant. This iron complex, in which one methyl group is replaced with a phenyl group in either wing of the macrocycle, oxidized unactivated C-H bonds in small organic molecules with very high selectivity in water (pH 8.5). Several substrates (34 examples) that contained arenes, heteroaromatics, and polar functional groups were oxidized with predictable selectivity and stereoretention with moderate to high yields (50-90%), low catalyst loadings (1-4 mol%) and a small excess of H2O2 (2-3 equiv.) in water. Mechanistic studies indicated the oxoiron(v) to be the active intermediate in water and displayed unprecedented selectivity towards 3° C-H bonds. Under single-turnover conditions, the reactivity of this oxoiron(v) intermediate in water was found to be around 300 fold higher than that in CH3CN, thus implying the role water plays in enzymatic systems.
Collapse
Affiliation(s)
- Sandipan Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Puja De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| |
Collapse
|
3
|
Chandel M, Kumar P, Arora A, Kataria S, Dubey SC, M D, Kaur K, Sahu BK, De Sarkar A, Shanmugam V. Nanocatalytic Interface to Decode the Phytovolatile Language for Latent Crop Diagnosis in Future Farms. Anal Chem 2022; 94:11081-11088. [PMID: 35905143 DOI: 10.1021/acs.analchem.2c02244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crop diseases cause the release of volatiles. Here, the use of an SnO2-based chemoresistive sensor for early diagnosis has been attempted. Ionone is one of the signature volatiles released by the enzymatic and nonenzymatic cleavage of carotene at the latent stage of some biotic stresses. To our knowledge, this is the first attempt at sensing volatiles with multiple oxidation sites, i.e., ionone (4 oxidation sites), from the phytovolatile library, to derive stronger signals at minimum concentrations. Further, the sensitivity was enhanced on an interdigitated electrode by the addition of platinum as the dopant for a favorable space charge layer and for surface island formation for reactive interface sites. The mechanistic influence of oxygen vacancy formation was studied through detailed density functional theory (DFT) calculations and reactive oxygen-assisted enhanced binding through X-ray photoelectron spectroscopy (XPS) analysis.
Collapse
Affiliation(s)
- Mahima Chandel
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Prem Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Anu Arora
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Sarita Kataria
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Sunil Chandra Dubey
- Plant Protection and Biosafety, Indian Council of Agricultural Research, Krishi Bhawan, Dr. Rajendra Prasad Road, New Delhi, New Delhi 110001, India
| | - Djanaguiraman M
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Kamaljit Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Bandana Kumari Sahu
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Abir De Sarkar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vijayakumar Shanmugam
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|
4
|
Amanullah S, Saha P, Dey A. Recent developments in the synthesis of bio-inspired iron porphyrins for small molecule activation. Chem Commun (Camb) 2022; 58:5808-5828. [PMID: 35474535 DOI: 10.1039/d2cc00430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes a diverse set of tetrapyrrole-based macrocycles (referred to as porphyrinoids) for catalyzing various biological processes. Investigation of the differences in electronic structure and reactivity in these reactions have revealed striking differences that lead to diverse reactivity from, apparently, similar looking active sites. Therefore, the role of the different heme cofactors as well as the distal superstructure in the proteins is important to understand. This article summarizes the role of a few synthetic metallo-porphyrinoids towards catalyzing several small molecule activation reactions, such as the ORR, NiRR, CO2RR, etc. The major focus of the article is to enlighten the synthetic routes to the well-decorated active-site mimic in a tailor-made fashion pursuing a retrosynthetic approach, learning from the biosynthesis of the cofactors. Techniques and the role of the second-sphere residues on the reaction rate, selectivity, etc. are incorporated emulating the basic amino acid residues fencing the active sites. These bioinspired mimics play an important role towards understanding the role of the prosthetic groups as well as the basic residues towards any reaction occurring in Nature.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| |
Collapse
|
5
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
6
|
Abstract
The oxidation of hydrocarbons of different structures under the same conditions is an important stage in the study of the chemical properties of both the hydrocarbons themselves and the oxidation catalysts. In a 50% H2O2/Cu2Cl4·2DMG/CH3CN system, where DMG is dimethylglyoxime (Butane-2,3-dione dioxime), at 50 °C under the same or similar conditions, we oxidized eleven RH hydrocarbons of different structures: mono-, bi- and tri-cyclic, framework and aromatic. To compare the composition of the oxidation products of these hydrocarbons, we introduced a new quantitative characteristic, “distributive oxidation depth D(O), %” and showed the effectiveness of its application. The adiabatic ionization potentials (AIP) and the vertical ionization potentials (VIP) of the molecules of eleven oxidized and related hydrocarbons were calculated using the DFT method in the B3LYP/TZVPP level of theory for comparison with experimental values and correlation with D(O). The same calculations of AIP were made for the molecules of the oxidant, solvent, DMG, related compounds and products. It is shown that component X, which determines the mechanism of oxidation of hydrocarbons RH with AIP(Exp) ≥ AIP(X) = 8.55 ± 0.03 eV, is a trans-DMG molecule. Firstly theoretically estimated experimental values of AIP(trans-DMG) = 8.53 eV and AIP(cis-DMG) = 8.27 eV.
Collapse
|
7
|
Mukherjee M, Dey A. Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. JACS AU 2021; 1:1296-1311. [PMID: 34604840 PMCID: PMC8479764 DOI: 10.1021/jacsau.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Nature has employed heme proteins to execute a diverse set of vital life processes. Years of research have been devoted to understanding the factors which bias these heme enzymes, with all having a heme cofactor, toward distinct catalytic activity. Among them, axial ligation, distal super structure, and substrate binding pockets are few very vividly recognized ones. Detailed mechanistic investigation of these heme enzymes suggested that several of these enzymes, while functionally divergent, use similar intermediates. Furthermore, the formation and decay of these intermediates depend on proton and electron transfer processes in the enzyme active site. Over the past decade, work in this group, using in situ surface enhanced resonance Raman spectroscopy of synthetic and biosynthetic analogues of heme enzymes, a general idea of how proton and electron transfer rates relate to the lifetime of different O2 derived intermediates has been developed. These findings suggest that the enzymatic activities of all these heme enzymes can be integrated into one general cycle which can be branched out to different catalytic pathways by regulating the lifetime and population of each of these intermediates. This regulation can further be achieved by tuning the electron and proton transfer steps. By strategically populating one of these intermediates during oxygen reduction, one can navigate through different catalytic processes to a desired direction by altering proton and electron transfer steps.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| |
Collapse
|