1
|
Joshi S, Moody A, Budthapa P, Gurung A, Gautam R, Sanjel P, Gupta A, Aryal SP, Parajuli N, Bhattarai N. Advances in Natural-Product-Based Fluorescent Agents and Synthetic Analogues for Analytical and Biomedical Applications. Bioengineering (Basel) 2024; 11:1292. [PMID: 39768110 PMCID: PMC11727039 DOI: 10.3390/bioengineering11121292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Fluorescence is a remarkable property exhibited by many chemical compounds and biomolecules. Fluorescence has revolutionized analytical and biomedical sciences due to its wide-ranging applications in analytical and diagnostic tools of biological and environmental importance. Fluorescent molecules are frequently employed in drug delivery, optical sensing, cellular imaging, and biomarker discovery. Cancer is a global challenge and fluorescence agents can function as diagnostic as well as monitoring tools, both during early tumor progression and treatment monitoring. Many fluorescent compounds can be found in their natural form, but recent developments in synthetic chemistry and molecular biology have allowed us to synthesize and tune fluorescent molecules that would not otherwise exist in nature. Naturally derived fluorescent compounds are generally more biocompatible and environmentally friendly. They can also be modified in cost-effective and target-specific ways with the help of synthetic tools. Understanding their unique chemical structures and photophysical properties is key to harnessing their full potential in biomedical and analytical research. As drug discovery efforts require the rigorous characterization of pharmacokinetics and pharmacodynamics, fluorescence-based detection accelerates the understanding of drug interactions via in vitro and in vivo assays. Herein, we provide a review of natural products and synthetic analogs that exhibit fluorescence properties and can be used as probes, detailing their photophysical properties. We have also provided some insights into the relationships between chemical structures and fluorescent properties. Finally, we have discussed the applications of fluorescent compounds in biomedical science, mainly in the study of tumor and cancer cells and analytical research, highlighting their pivotal role in advancing drug delivery, biomarkers, cell imaging, biosensing technologies, and as targeting ligands in the diagnosis of tumors.
Collapse
Affiliation(s)
- Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Alexis Moody
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Padamlal Budthapa
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Anita Gurung
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Rachana Gautam
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Prabha Sanjel
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Aakash Gupta
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA;
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (S.J.); (P.B.); (A.G.); (R.G.); (P.S.)
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
2
|
A New Unnatural Amino Acid Derived from the Modification of 4′-(p-tolyl)-2,2′:6′,2″-terpyridine and Its Mixed-Ligand Complexes with Ruthenium: Synthesis, Characterization, and Photophysical Properties. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The modification of the methyl group of 4′-(p-tolyl)-2,2′:6′,2″-terpyridine produced the novel unnatural amino acid 3-(4-([2,2′:6′,2″-terpyridin]-4′-yl)phenyl)-2-aminopropanoic acid (phet). Mononuclear heteroleptic ruthenium complexes of the general formulae [Ru(L1)(L2)](PF6)2 (L1 = 2-acetylamino-2-(4-[2,2′:6′,2″]terpyridine-4′-yl-benzyl)-malonic acid diethyl ester, (phem), 3-(4-([2,2′:6′,2″-terpyridin]-4′-yl)phenyl)-2-aminopropanoic acid, (phet), and L2 = 2,2′:6′,2″-terpyridine (tpy), 4′-phenyl-2,2′:6′,2″-terpyridine (ptpy), 4′-(p-tolyl)-2,2′:6′,2″-terpyridine (mptpy)), as well as the homoleptic [Ru(phem)2](PF6)2 and [Ru(phet)2](PF6)2, were synthesized and characterized by means of NMR spectroscopic techniques, elemental analysis, and high-resolution mass spectrometry. The photophysical properties of the synthesized complexes were also studied.
Collapse
|
3
|
Alhawsah B, Yan B, Aydin Z, Niu X, Guo M. Highly Selective Fluorescent Probe With an Ideal pH Profile for the Rapid and Unambiguous Determination of Subcellular Labile Iron (III) Pools in Human Cells. ANAL LETT 2022; 55:1954-1970. [DOI: 10.1080/00032719.2022.2039932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Bayan Alhawsah
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Bing Yan
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Ziya Aydin
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
- Vocational School of Technical Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Xiangyu Niu
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Maolin Guo
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
4
|
Wang Y, Du C, Liu Z, Pei K, Zhang Y, Qi W. Chemiluminescence “turn-on” detection of tyrosinase activity via in situ generation of dopamine based on a lucigenin and riboflavin system. NEW J CHEM 2022. [DOI: 10.1039/d1nj05628j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lucigenin and riboflavin chemiluminescence system was utilized for the first to achieve “turn-on” detection of tyrosinase activity via the in situ generation of dopamine.
Collapse
Affiliation(s)
- Yi Wang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Chengpei Du
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Ze Liu
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, P. R. China
| | - Kanglin Pei
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Yan Zhang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Wenjing Qi
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| |
Collapse
|
5
|
Adhikari A, Bhattarai BR, Aryal A, Thapa N, Kc P, Adhikari A, Maharjan S, Chanda PB, Regmi BP, Parajuli N. Reprogramming natural proteins using unnatural amino acids. RSC Adv 2021; 11:38126-38145. [PMID: 35498070 PMCID: PMC9044140 DOI: 10.1039/d1ra07028b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Unnatural amino acids have gained significant attention in protein engineering and drug discovery as they allow the evolution of proteins with enhanced stability and activity. The incorporation of unnatural amino acids into proteins offers a rational approach to engineer enzymes for designing efficient biocatalysts that exhibit versatile physicochemical properties and biological functions. This review highlights the biological and synthetic routes of unnatural amino acids to yield a modified protein with altered functionality and their incorporation methods. Unnatural amino acids offer a wide array of applications such as antibody-drug conjugates, probes for change in protein conformation and structure-activity relationships, peptide-based imaging, antimicrobial activities, etc. Besides their emerging applications in fundamental and applied science, systemic research is necessary to explore unnatural amino acids with novel side chains that can address the limitations of natural amino acids.
Collapse
Affiliation(s)
- Anup Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Bibek Raj Bhattarai
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashika Aryal
- Department of Chemistry, Birendra Multiple Campus, Tribhuvan University Bharatpur Chitwan Nepal
| | - Niru Thapa
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Puja Kc
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashma Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Sushila Maharjan
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Prem B Chanda
- Department of Chemistry and Physics, Southeastern Louisiana University Hammond Louisiana 70402 USA
| | - Bishnu P Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University Tallahassee Florida 32307 USA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| |
Collapse
|
6
|
Bajaj K, Pidiyara K, Khan S, Jha PN, Sakhuja R, Kumar D. Fluorescent glutamine and asparagine as promising probes for chemical biology. Org Biomol Chem 2021; 19:7695-7700. [PMID: 34524312 DOI: 10.1039/d1ob01029h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent probes have become valuable tools in chemical biology, providing interesting inferences for unfolding the complexities of natural biochemical processes. In this study, we report the synthesis and characterization of fluorescent labelled glutamine (Gln) and asparagine (Asn) derivatives via traceless Staudinger ligation, which exhibited high fluorescence quantum yields, excellent photostabilities and emission of blue fluorescence in the visible region. The successful permeation of these fluorescent amino acids into cellular components proved their potential as fluorescent probes for chemical biology.
Collapse
Affiliation(s)
- Kiran Bajaj
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Karishma Pidiyara
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Shahid Khan
- Department of Biology, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Prabhat N Jha
- Department of Biology, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| |
Collapse
|