1
|
Mondal K, Paul S, Halder P, Talukdar V, Das P. Iodine-Catalyzed Regioselective C-3 Chalcogenation of 7-Azaindoles: Access to Benzothiophene-Fused 7-Azaindole Analogs. J Org Chem 2024; 89:17042-17058. [PMID: 39527407 DOI: 10.1021/acs.joc.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An iodine-catalyzed method has been reported for efficient regioselective C-3 sulfenylation, selenylation, thiocyanation, and selenocyanation of NH-free 7-azaindoles using thiophenols, diselenides, potassium thiocyanates, and selenocyanates, respectively. This approach showcases high efficiency and remarkable versatility, facilitating the synthesis of diverse chalcogenated 7-azaindoles. Additionally, the sulfenylated derivatives have been further diversified to generate a new array of benzothiophene-fused 7-azaindole cores of pharmaceutical interest. The synthetic flexibility of this protocol has been highlighted through the gram-scale synthesis of sulfonylated 7-azaindole-based bioactive 5-HT6 receptor agonists.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Siddhartha Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
2
|
Wang M, Zhou Q, Xu Z, Zhang GP. Azaindole: A Candidate Anchor for Regulating Charge Polarity and Inducing Resonance Transmission at the Fermi Level via Dehydrogenation. J Phys Chem A 2024; 128:9861-9868. [PMID: 39540284 DOI: 10.1021/acs.jpca.4c05203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tuning the polarity of charge carriers is essential for designing molecular logic devices in molecular electronics. In this study, the electrical transport properties of a family of azaindole-anchored single-molecule junctions have been investigated using density functional theory combined with the nonequilibrium Green's function method. The obtained results reveal that dehydrogenation is an effective method for reversing the polarity of charge carriers. The molecular junctions based on the entire azaindole unit are n-type and contain electrons as the principal charge carriers, whereas the dehydrogenated junctions are p-type and contain holes as the main carriers. Furthermore, the azaindole anchors undergo a transition from an electron-rich to an electron-deficient state due to dehydrogenation, which is the original cause of the charge carrier polarity conversion. Dehydrogenated molecular junctions also exhibit the Fermi pinning effect and a sharp highest occupied molecular orbital (HOMO) resonance peak at the Fermi level. In addition, using Pt electrodes instead of Au electrodes is a means of producing a HOMO resonance peak a for azaindole-based molecular junctions. This work demonstrates the enormous potential of utilizing azaindole-anchored molecular junctions for the implementation of molecular logic and multifunctional molecular devices.
Collapse
Affiliation(s)
- Minglang Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Qi Zhou
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Zirui Xu
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
3
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
4
|
Wróbel MZ, Chodkowski A, Siwek A, Satała G, Bojarski AJ, Dawidowski M. Design and Synthesis of Potential Multi-Target Antidepressants: Exploration of 1-(4-(7-Azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1 H-indol-3-yl)pyrrolidine-2,5-dione Derivatives with Affinity for the Serotonin Transporter. Int J Mol Sci 2024; 25:11276. [PMID: 39457057 PMCID: PMC11508649 DOI: 10.3390/ijms252011276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
We describe the design, synthesis and structure-activity relationship of a novel series of 1-(4-(7-azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with combined effects on the serotonin (5-HT1A) and dopamine (D2) receptors and the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) transporters as multi-target directed ligands for the treatment of depression. All of the tested compounds demonstrated good affinity for the serotonin transporter (SERT). Among them, compounds 11 and 4 emerged as the lead candidates because of their promising pharmacological profile based on in vitro studies. Compound 11 displayed a high affinity for the 5-HT1A (Ki = 128.0 nM) and D2 (Ki = 51.0 nM) receptors, and the SERT (Ki = 9.2 nM) and DAT (Ki = 288.0 nM) transporters, whereas compound 4 exhibited the most desirable binding profile to SERT/NET/DAT among the series: Ki = 47.0 nM/167.0 nM/43% inhibition at 1 µM. These results suggest that compounds 4 and 11 represent templates for the future development of multi-target antidepressant drugs.
Collapse
Affiliation(s)
- Martyna Z. Wróbel
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| | - Andrzej Chodkowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland; (G.S.); (A.J.B.)
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland; (G.S.); (A.J.B.)
| | - Maciej Dawidowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warszawa, Poland; (A.C.); (M.D.)
| |
Collapse
|
5
|
Humke JN, Belli RG, Plasek EE, Kargbo SS, Ansel AQ, Roberts CC. Nickel binding enables isolation and reactivity of previously inaccessible 7-aza-2,3-indolynes. Science 2024; 384:408-414. [PMID: 38662814 PMCID: PMC12045518 DOI: 10.1126/science.adi1606] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/21/2024] [Indexed: 05/03/2025]
Abstract
N-Heteroaromatics are key elements of pharmaceuticals, agrochemicals, and materials. N-Heteroarynes provide a scaffold to build these essential molecules but are underused because five-membered N-heteroarynes have been largely inaccessible on account of the strain of a triple bond in that small of a ring. On the basis of principles of metal-ligand interactions that are foundational to organometallic chemistry, in this work we report the stabilization of five-membered N-heteroarynes in the nickel coordination sphere. A series of 1,2-bis(dicyclohexylphosphino)ethane nickel 7-azaindol-2,3-yne complexes were synthesized and characterized crystallographically and spectroscopically. Ambiphilic reactivity of the nickel 7-azaindol-2,3-yne complexes was observed with multiple nucleophilic, electrophilic, and enophilic coupling partners.
Collapse
Affiliation(s)
- Jenna N. Humke
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Roman G. Belli
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Erin E. Plasek
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Sallu S. Kargbo
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | - Annabel Q. Ansel
- University of Minnesota, Department of Chemistry; Minneapolis, MN USA
| | | |
Collapse
|
6
|
Chamakiya CA, Chothani SR, Joshi RJ, Bhalodia J, Ambasana MA, Bapodra AH, Kapuriya N. Efficient and metal-free synthesis of 2-aroyl 7-azaindoles via thermally induced denitrogenative intramolecular annulation of 1,2,3,4-tetrazolopyridines. Org Biomol Chem 2024; 22:2192-2196. [PMID: 38411006 DOI: 10.1039/d4ob00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A facile and metal-free intramolecular denitrogenative annulation strategy for the preparation of novel 2-aroyl 7-azaindoles has been developed from 3-(tetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one in the presence of the deep eutectic solvent Dowtherm A. The valuable features of the protocol include a short reaction time, absence of any metal catalyst, utilization of a eutectic solvent, easy product isolation, and very good yields of novel 2-aroyl 7-azaindoles.
Collapse
Affiliation(s)
- Chirag A Chamakiya
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Savankumar R Chothani
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Rupal J Joshi
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Jasmin Bhalodia
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Mrunal A Ambasana
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Atul H Bapodra
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Naval Kapuriya
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| |
Collapse
|
7
|
Talukdar V, Mondal K, Kumar Dhaked D, Das P. CuI/DMAP-Catalyzed Oxidative Alkynylation of 7-Azaindoles: Synthetic Scope and Mechanistic Studies. Chem Asian J 2024:e202300987. [PMID: 38258444 DOI: 10.1002/asia.202300987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
An efficient and practical method for the N-alkynylation of 7-azaindoles has been established by using CuI/DMAP catalytic system at room temperature and in open air. This simple protocol has been successfully employed in the synthesis of a wide range of N-alkynylated 7-azaindoles with good yields. Also, this approach is well-suited for large-scale N-alkynylation reactions. The designed N-alkynylated 7-azaindoles were further subjected to Cu-/Ir-catalyzed alkyne-azide cycloaddition (CuAAC/IrAAC) or "click" reaction for the rapid synthesis of 1,4-/1,5 disubstituted 1,2,3-triazole decorated 7-azaindoles. A mechanistic study based on density functional theory (DFT) calculations and ultraviolet-visible (UV) spectroscopic studies revealed that the CuI and DMAP combination formed a [CuII (DMAP)2 I2 ] species, which acts as an active catalyst. The DFT method was used to assess the energetic viability of an organometallic in the C-N bond formation pathway originating from the [CuII (DMAP)2 I2 ] complex. We expect that the newly designed Cu/DMAP/alkyne system will offer valuable insights into the field of Cu-catalyzed transformations.
Collapse
Affiliation(s)
- Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institution of Technology (Indian School of Mines), Dhanbad, 826004, Dhanbad (Jharkhand), India
| | - Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institution of Technology (Indian School of Mines), Dhanbad, 826004, Dhanbad (Jharkhand), India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, 700054, Kolkata, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institution of Technology (Indian School of Mines), Dhanbad, 826004, Dhanbad (Jharkhand), India
| |
Collapse
|
8
|
Gardner ED, Johnson BP, Dimas DA, McClurg HE, Severance ZC, Burgett AW, Singh S. Unlocking New Prenylation Modes: Azaindoles as a New Substrate Class for Indole Prenyltransferases. ChemCatChem 2023; 15:e202300650. [PMID: 37954549 PMCID: PMC10634513 DOI: 10.1002/cctc.202300650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 11/14/2023]
Abstract
Aza-substitution, the replacement of aromatic CH groups with nitrogen atoms, is an established medicinal chemistry strategy for increasing solubility, but current methods of accessing functionalized azaindoles are limited. In this work, indole-alkylating aromatic prenyltransferases (PTs) were explored as a strategy to directly functionalize azaindole-substituted analogs of natural products. For this, a series of aza-l-tryptophans (Aza-Trp) featuring N-substitution of every aromatic CH position of the indole ring and their corresponding cyclic Aza-l-Trp-l-proline dipeptides (Aza-CyWP), were synthesized as substrate mimetics for the indole-alkylating PTs FgaPT2, CdpNPT, and FtmPT1. We then demonstrated most of these substrate analogs were accepted by a PT, and the regioselectivity of each prenylation was heavily influenced by the position of the N-substitution. Remarkably, FgaPT2 was found to produce cationic N-prenylpyridinium products, representing not only a new substrate class for indole PTs but also a previously unobserved prenylation mode. The discovery that nitrogenous indole bioisosteres can be accepted by PTs thus provides access to previously unavailable chemical space in the search for bioactive indolediketopiperazine analogs.
Collapse
Affiliation(s)
- Eric D. Gardner
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Bryce P. Johnson
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Dustin A. Dimas
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Heather E. McClurg
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Zachary C. Severance
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Anthony W. Burgett
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| |
Collapse
|
9
|
Meng Q, Ren X, Wang R, Han Y, Li X, Zhang Q, Li Z, Wang Y, Huang L, Yu H. Design, synthesis, anticonvulsant activity and structure-activity relationships of novel 7-Azaindole derivatives. Bioorg Chem 2023; 133:106430. [PMID: 36812828 DOI: 10.1016/j.bioorg.2023.106430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
In search of new-structure compounds with good anticonvulsant activity and low neurotoxicity, a series of 3-(1,2,3,6-tetrahydropyridine)-7-azaindole derivatives was designed and synthesized. Their anticonvulsant activities were evaluated by maximal electroshock (MES) and pentylenetetrazole (PTZ) test, and neurotoxicity was determined by the rotary rod method. In the PTZ-induced epilepsy model, compounds 4i, 4p and 5 k showed significant anticonvulsant activities with ED50 values at 30.55 mg/kg, 19.72 mg/kg and 25.46 mg/kg, respectively. However, these compounds did not show any anticonvulsant activity in the MES model. More importantly, these compounds have lower neurotoxicity with protective index (PI = TD50/ED50) values at 8.58, 10.29 and 7.41, respectively. In order to obtain a clearer structure-activity relationship, more compounds were designed rationally based on 4i, 4p and 5 k and their anticonvulsant activities were evaluated on PTZ models. The results demonstrated that the N-atom at the 7-position of the 7-azaindole and the double-bond in the 1,2,3,6-tetrahydropyridine skeleton was essential for antiepileptic activities.
Collapse
Affiliation(s)
- Qingfei Meng
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xue Ren
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Rui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yu Han
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiufen Li
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Qin Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhenpeng Li
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuexing Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Longjiang Huang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 XiannongtanStreet, Xicheng district, Beijing 100050, China.
| | - Haibo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 XiannongtanStreet, Xicheng district, Beijing 100050, China.
| |
Collapse
|
10
|
Mondal K, Mukhopadhyay N, Sengupta A, Roy T, Das P. Exploiting Coordination Behavior of 7-Azaindole for Mechanistic Investigation of Chan-Lam Coupling and Application to 7-Azaindole Based Pharmacophores. Chemistry 2023; 29:e202203718. [PMID: 36511941 DOI: 10.1002/chem.202203718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Multiple spectroscopic techniques, along with single-crystal X-ray analysis, have been used to reveal the detailed structural and electronic information on reaction intermediates of a new copper(II)-DBU catalytic system for the N-arylation of 7-Azaindole. The reaction mixture of Chan-Lam cross-coupling yields two dimeric copper(II)-7-azaindole complexes, including one attached with DBU, prior to adding arylboronic acid and are confirmed structurally and spectroscopically. A suitable mechanism has been proposed using the dimeric copper(II) complex as a catalyst for the coupling reactions. The role of DBU as a base and also as an auxiliary ligand in the course of the reaction has been established. The transmetalated monomeric aryl-copper(II) species generated from the dimeric unit is oxidized by another equivalent of copper(II) to yield an aryl-copper(III) intermediate for facile N-arylation, which has been authenticated with UV-vis spectroscopy. The regeneration of the copper(II)-catalyst by aerial oxidation of colorless copper(I) species (generated via reductive elimination and disproportionation step) is confirmed by mass and absorption spectroscopy. Detailed DFT and TD-DFT calculations help to rationalize the proposed reaction intermediates and their corresponding electronic transitions. Moreover, the confirmation of copper(I)-7-azaindole intermediate via HRMS reaffirmed the involvement of Cu(II)/Cu(III)/Cu(I) species in the Chan-Lam type of coupling. A medicinally-important 7-azaindole-based SHP2 inhibitor has been synthesized via sequential arylation.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences I, ndian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741 246, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Tanumay Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| |
Collapse
|
11
|
Mondal K, Patra S, Halder P, Mukhopadhyay N, Das P. CuF 2/DMAP-Catalyzed N-Vinylation: Scope and Mechanistic Study. Org Lett 2023. [PMID: 36546851 DOI: 10.1021/acs.orglett.2c03856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CuF2/DMAP has been established as an excellent catalytic system for vinylsilane-promoted N-vinylation of amides and azoles at room temperature without an external fluoride source. A mechanism has been proposed on the basis of the isolation of reactive intermediate [Cu(DMAP)4Cl2], fluoride ion-assisted transmetalation, and ultraviolet-visible spectroscopic studies. The catalytic efficiency of the synthesized and structurally characterized [Cu(DMAP)4Cl2] complex has been demonstrated. The valuable monomers for water-soluble polymers, viz., NVP, NVC, and NVIBA, were synthesized on a gram scale.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Susanta Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
12
|
Marcos Santos L, da Silveira NJF. Current Fragment-to-lead Approaches Starting from the 7-azaindole: The Pharmacological Versatility of a Privileged Molecular Fragment. Curr Top Med Chem 2023; 23:2116-2130. [PMID: 37461366 DOI: 10.2174/1568026623666230718100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/03/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023]
Abstract
Fragment-based drug discovery is one of the most powerful paradigms in the recent context of medicinal chemistry and is being widely practiced by academic and industrial researchers. Currently, azaindoles are among the most exploited molecular fragments in pharmaceutical innovation projects inspired by fragment-to-lead strategies. The 7-azaindole is the most prominent representative within this remarkable family of pyrrolopyridine fragments, as it is present in the chemical structure of several approved antitumor drugs and also of numerous therapeutic candidates. In this paper, a brief overview on existing proofs of concept in the literature will be presented, as well as some recent works that corroborate 7-azaindole as a privileged and pharmacologically versatile molecular fragment.
Collapse
Affiliation(s)
- Leandro Marcos Santos
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
- Pharmaceutical Chemistry Research Laboratory / LQFar (D202A), Department of Food and Medicines, Faculty of Pharmaceutical Sciences, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| | - Nelson José Freitas da Silveira
- Laboratory of Molecular Modeling and Computer Simulation / MolMod-CS (D311-F), Institute of Chemistry, Federal University of Alfenas / UNIFAL-MG, Alfenas, Minas Gerais, 37130-001, Brazil
| |
Collapse
|
13
|
Álvarez-Conde J, Garzón-Ruiz A, Navarro A, Jiménez-Pulido SB, González-Rodríguez P, Cabanillas-González J, García-Frutos EM. The role of the diyne bond on the excited state deactivation of diyne-bridged 7-azaindoles in solution and solid state. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Sandeep Kumar J, Sujeevan Reddy G, Medishetti R, Amirul Hossain K, Thirupataiah B, Edelli J, Dilip Bele S, Kristina Edwin R, Joseph A, Shenoy GG, Mallikarjuna Rao C, Pal M. Ultrasound assisted one-pot synthesis of rosuvastatin based novel azaindole derivatives via coupling-cyclization strategy under Pd/Cu-catalysis: their evaluation as potential cytotoxic agents. Bioorg Chem 2022; 124:105857. [DOI: 10.1016/j.bioorg.2022.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
15
|
Liu S, Zhang Y, Zhao C, Zhou X, Liang J, Zhang P, Jiao LY, Yang X, Ma Y. N-Aroyloxycarbamates as switchable nitrogen and oxygen precursor: Ir/Cu controlled divergent C–H functionalization of heteroarenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01827b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemodivergent control in the functionalization of nitrogen-directed aromatic C–H bonds has been achieved by a switchable catalyst.
Collapse
Affiliation(s)
- Shanshan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yuanyuan Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Chen Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Xianying Zhou
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Jiahui Liang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Pingjun Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Lin-Yu Jiao
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, P. R. China
| | - Xiufang Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| |
Collapse
|
16
|
Ryu H, Pudasaini B, Cho D, Hong S, Baik MH. Oxidatively induced reactivity in Rh( iii)-catalyzed 7-azaindole synthesis: insights into the role of the silver additive. Chem Sci 2022; 13:10707-10714. [DOI: 10.1039/d2sc01650h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
The Ag+ cations oxidize and promote the activity of Rh-intermediates in the coupling of 2-aminopyridine and alkyne to form 7-azaindole.
Collapse
Affiliation(s)
- Ho Ryu
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Dasol Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
17
|
Rajput S, Kaur R, Jain N. Pd and photoredox dual catalysis assisted decarboxylative ortho-benzoylation of N-phenyl-7-azaindoles. Org Biomol Chem 2022; 20:1453-1461. [DOI: 10.1039/d1ob02338a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Directing group assisted decarboxylative ortho-benzoylation of N-aryl-7-azaindoles with α-keto acids has been achieved by synergistic visible light promoted photoredox and palladium catalysis. The approach tenders rapid entry to aryl ketone...
Collapse
|
18
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
19
|
Wang J, Lin Z, Zheng K, Xiao R, Qian L. Mechanistic and selectivity investigations into Fe-catalyzed 2, 3-disubstituted azaindole formation from β,β-disubstituted tetrazole. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Majumder S, Ghosh S, Pyne P, Ghosh A, Ghosh D, Hajra A. Synthesis of Unsymmetrical Biheteroarenes via Dehydrogenative and Decarboxylative Coupling: a Decade Update. CHEM REC 2021; 22:e202100288. [PMID: 34970849 DOI: 10.1002/tcr.202100288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
Abstract
The design and development of robust and efficient methods for installing one heterocycle with another is endowed as a ubiquitous and powerful synthetic strategy to access complex organic biheterocycles in recent days due to their pervasive applications in medicinal as well as material chemistry. This perspective presents an overview on the recent findings and developments for the synthesis of unsymmetrical biheteroarenes via dehydrogenative and decarboxylative couplings with literature coverage mainly extending from 2011 to 2021. For simplification of the readers, the article has been subcategorized based on the catalysts used in the reactions.
Collapse
Affiliation(s)
- Souvik Majumder
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Debashis Ghosh
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore, 560027, Karnataka, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
21
|
Vanaparthi S, Mamta, Yadav J, Pawar AP, Iype E, Rana S, Kumar I. Two-pot synthesis and photophysical studies of 1,6-disubstituted 5-aza-indoles from succinaldehyde and N-aryl propargylic-imines. Org Biomol Chem 2021; 19:10601-10610. [PMID: 34859806 DOI: 10.1039/d1ob01949j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-pot synthesis of 5-aza-indoles has been developed from aqueous succinaldehyde and N-aryl propargylic-imines. This overall protocol involves: (i) the metal-free [3 + 2] annulation of aqueous succinaldehyde and N-aryl propargylic-imines to access 2-alkynyl-pyrrole-3-aldehydes and (ii) Ag-catalyzed 6-endo-dig-cyclization to obtain substituted 5-aza-indoles in the second pot. The 5-aza-indoles showed engaging photophysical activities, and the practicality of this pot-economic gram-scale synthesis has been demonstrated.
Collapse
Affiliation(s)
- Satheeshvarma Vanaparthi
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Mamta
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Eldhose Iype
- Department of Chemical Engineering, BITS Pilani, Dubai Campus, Dubai, United Arab Emirates
| | - Sravendra Rana
- University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres, Bidholi, Dehradun, 248007, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
22
|
Ameur Messaoud MY, Bentabed-Ababsa G, Fajloun Z, Hamze M, Halauko YS, Ivashkevich OA, Matulis VE, Roisnel T, Dorcet V, Mongin F. Deprotometalation-Iodolysis and Direct Iodination of 1-Arylated 7-Azaindoles: Reactivity Studies and Molecule Properties. Molecules 2021; 26:6314. [PMID: 34684895 PMCID: PMC8537530 DOI: 10.3390/molecules26206314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Five protocols were first compared for the copper-catalyzed C-N bond formation between 7-azaindole and aryl/heteroaryl iodides/bromides. The 1-arylated 7-azaindoles thus obtained were subjected to deprotometalation-iodolysis sequences using lithium 2,2,6,6-tetramethylpiperidide as the base and the corresponding zinc diamide as an in situ trap. The reactivity of the substrate was discussed in light of the calculated atomic charges and the pKa values. The behavior of the 1-arylated 7-azaindoles in direct iodination was then studied, and the results explained by considering the HOMO orbital coefficients and the atomic charges. Finally, some of the iodides generated, generally original, were involved in the N-arylation of indole. While crystallographic data were collected for fifteen of the synthesized compounds, biological properties (antimicrobial, antifungal and antioxidant activity) were evaluated for others.
Collapse
Affiliation(s)
- Mohamed Yacine Ameur Messaoud
- Institut des Sciences Chimiques de Rennes–UMR 6226, University of Rennes, CNRS, ISCR, 35000 Rennes, France; (M.Y.A.M.); (T.R.); (V.D.)
- Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées, Université d’Oran 1 Ahmed Ben Bella, BP 1524 El M’Naouer, Oran 31000, Algeria
| | - Ghenia Bentabed-Ababsa
- Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences Exactes et Appliquées, Université d’Oran 1 Ahmed Ben Bella, BP 1524 El M’Naouer, Oran 31000, Algeria
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
- Faculty of Sciences 3, Campus Michel Slayman, Lebanese University, Tripoli 1352, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie, Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon;
| | - Yury S. Halauko
- UNESCO Chair of Belarusian State University, 220030 Minsk, Belarus
| | - Oleg A. Ivashkevich
- Research Institute for Physico-Chemical Problems, Belarusian State University, 220030 Minsk, Belarus; (O.A.I.); (V.E.M.)
| | - Vadim E. Matulis
- Research Institute for Physico-Chemical Problems, Belarusian State University, 220030 Minsk, Belarus; (O.A.I.); (V.E.M.)
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes–UMR 6226, University of Rennes, CNRS, ISCR, 35000 Rennes, France; (M.Y.A.M.); (T.R.); (V.D.)
| | - Vincent Dorcet
- Institut des Sciences Chimiques de Rennes–UMR 6226, University of Rennes, CNRS, ISCR, 35000 Rennes, France; (M.Y.A.M.); (T.R.); (V.D.)
| | - Florence Mongin
- Institut des Sciences Chimiques de Rennes–UMR 6226, University of Rennes, CNRS, ISCR, 35000 Rennes, France; (M.Y.A.M.); (T.R.); (V.D.)
| |
Collapse
|
23
|
Sengupta S, Das P. C-H activation reactions of nitroarenes: current status and outlook. Org Biomol Chem 2021; 19:8409-8424. [PMID: 34554174 DOI: 10.1039/d1ob01455b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ring substitution reactions of nitroarenes remain an under-developed area of organic synthesis, confined to the narrow domains of SNAr and SNArH reactions. While searching for alternative methodologies, we took stock of the C-H activation reactions of nitroarenes which unearthed a variety of examples of nitro directed regioselective C-H functionalization reactions such as ortho-arylation, -benzylation/alkylation, and -allylation, oxidative Heck and C-H arylation reactions on (hetero)aromatic rings. A collective account of these reactions is presented in this review to showcase the existing landscape of C-H activation reactions of nitroarenes, to create interest in this field for further development and propagate this strategy as a superior alternative for ring substitution reactions of nitroarenes. The prospect of merging the C-H activation of nitroarenes with C-NO2 activation, thereby harnessing NO2 as a transformable multitasking directing group, is also illustrated.
Collapse
Affiliation(s)
- Saumitra Sengupta
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad-826004, India.
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad-826004, India.
| |
Collapse
|
24
|
Lapcinska S, Dimitrijevs P, Lapcinskis L, Arsenyan P. Visible Light‐Mediated Functionalization of Selenocystine‐Containing Peptides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sindija Lapcinska
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Linards Lapcinskis
- Research Laboratory of Functional Materials Technologies Faculty of Materials Science and Applied Chemistry Riga Technical University P. Valdena 3/7 LV-1048 Riga Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| |
Collapse
|
25
|
Liu J, Jiang J, Yang Z, Zeng Q, Zheng J, Zhang S, Zheng L, Zhang SS, Liu ZQ. Rhodium(III)-catalyzed oxidative alkylation of N-aryl-7-azaindoles with cyclopropanols. Org Biomol Chem 2021; 19:993-997. [PMID: 33443262 DOI: 10.1039/d0ob02323j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient Rh(iii)-catalyzed C-H oxidative alkylation of N-aryl-7-azaindoles with cyclopropanols by merging tandem C-H and C-C cleavage was developed. This transformation features mild reaction conditions, high regioselectivity, and excellent functional group compatibility. The resulting β-aryl ketone derivatives can be readily transformed into 7-azaindole-containing π-extended polycyclic heteroarenes.
Collapse
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Qiaohai Zeng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jieying Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Siying Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
26
|
Raina G, Kannaboina P, Ahmed QN, Mondal K, Das P. Palladium‐Catalyzed Barluenga‐Valdes Type Cross‐Coupling Reaction: Alkenylation of 7‐Azaindole
s. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gaurav Raina
- Medicinal Chemistry Division CSIR-Indian Institute of Integrative Medicine (IIIM) Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Uttar Pradesh 201002 India
| | - Prakash Kannaboina
- Medicinal Chemistry Division CSIR-Indian Institute of Integrative Medicine (IIIM) Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Uttar Pradesh 201002 India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division CSIR-Indian Institute of Integrative Medicine (IIIM) Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Uttar Pradesh 201002 India
| | - Krishanu Mondal
- Department of Chemistry Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Parthasarathi Das
- Department of Chemistry Indian Institute of Technology (ISM) Dhanbad 826004 India
| |
Collapse
|
27
|
Liu J, Xu G, Tang S, Chen Q, Sun J. Site-Selective Functionalization of 7-Azaindoles via Carbene Transfer and Isolation of N-Aromatic Zwitterions. Org Lett 2020; 22:9376-9380. [DOI: 10.1021/acs.orglett.0c03653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Junheng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|