1
|
Takezawa Y, Shionoya M. Enzymatic synthesis of ligand-bearing oligonucleotides for the development of metal-responsive DNA materials. Org Biomol Chem 2024; 22:7259-7270. [PMID: 38967487 DOI: 10.1039/d4ob00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Metal-mediated artificial base pairs are some of the most promising building blocks for constructing DNA-based supramolecules and functional materials. These base pairs are formed by coordination bonds between ligand-type nucleobases and a bridging metal ion and have been exploited to develop metal-responsive DNA materials and DNA-templated metal arrays. In this review, we provide an overview of methods for the enzymatic synthesis of DNA strands containing ligand-type artificial nucleotides that form metal-mediated base pairs. Conventionally, ligand-bearing DNA oligomers have been synthesized via solid-phase synthesis using a DNA synthesizer. In recent years, there has been growing interest in enzymatic methods as an alternative approach to synthesize ligand-bearing DNA oligomers, because enzymatic reactions proceed under mild conditions and do not require protecting groups. DNA polymerases are used to incorporate ligand-bearing unnatural nucleotides into DNA, and DNA ligases are used to connect artificial DNA oligomers to natural DNA fragments. Template-independent polymerases are also utilized to post-synthetically append ligand-bearing nucleotides to DNA oligomers. In addition, enzymatic replication of DNA duplexes containing metal-mediated base pairs has been intensively studied. Enzymatic methods facilitate the synthesis of DNA strands containing ligand-bearing nucleotides at both internal and terminal positions. Enzymatically synthesized ligand-bearing DNAs have been applied to metal-dependent self-assembly of DNA structures and the allosteric control of DNAzyme activity through metal-mediated base pairing. Therefore, the enzymatic synthesis of ligand-bearing oligonucleotides holds great potential in advancing the development of various metal-responsive DNA materials, such as molecular sensors and machines, providing a versatile tool for DNA supramolecular chemistry and nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| |
Collapse
|
2
|
de Oliveira Martins E, Weber G. Nearest-neighbour parametrization of DNA single, double and triple mismatches at low sodium concentration. Biophys Chem 2024; 306:107156. [PMID: 38157701 DOI: 10.1016/j.bpc.2023.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
DNA mismatches, that is, base pairs different from the canonical AT and CG, are involved in numerous biological processes and can be a problem for technological applications such as PCR amplification. The nearest-neighbour (NN) model is the standard approach for predicting melting temperatures and is used in methods of secondary structure predictions and modelling of hybridization kinetics. However, despite its biological and technological importance, existing NN parameters that include DNA mismatches are incomplete, and those available were obtained from a limited set of melting temperature at high sodium concentration. To our knowledge, there is currently no NN set of parameters for up to three mismatches covering all configurations at low sodium concentrations. Here, we are applying the NN model to a large set of 4096 published melting temperatures, covering all combinations of single, double and triple mismatches. Dealing with such a large set of temperature is challenging in several ways, bringing new methodological problems. Here, optimizing a large number of 252 independent parameters has required the development of a new method where we readjust the seed parameters using the definition of the Gibbs free energy. The new parameters predict the training set within 1.1 °C and the validation set to 2.7 °C.
Collapse
Affiliation(s)
- Erik de Oliveira Martins
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; Escola Politécnica, Centro Universitário Católica do Leste de Minas Gerais, 35170-056 Coronel Fabriciano, MG, Brazil
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Mesoscopic model confirms strong base pair metal mediated bonding for T-Hg 2+-T and weaker for C-Ag +-C. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Chan KY, Kinghorn AB, Hollenstein M, Tanner JA. Chemical modifications for a next generation of nucleic acid aptamers. Chembiochem 2022; 23:e202200006. [PMID: 35416400 DOI: 10.1002/cbic.202200006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/11/2022] [Indexed: 11/08/2022]
Abstract
In the past three decades, in vitro systematic evolution of ligands by exponential enrichment (SELEX) has yielded many aptamers for translational applications in both research and clinical settings. Despite their promise as an alternative to antibodies, the low success rate of SELEX (~ 30%) has been a major bottleneck that hampers the further development of aptamers. One hurdle is the lack of chemical diversity in nucleic acids. To address this, the aptamer chemical repertoire has been extended by introducing exotic chemical groups, which provide novel binding functionalities. This review will focus on how modified aptamers can be selected and evolved, with illustration of some successful examples. In particular, unique chemistries are exemplified. Various strategies of incorporating modified building blocks into the standard SELEX protocol are highlighted, with a comparison of the differences between pre-SELEX and post-SELEX modifications. Nucleic acid aptamers with extended functionality evolved from non-natural chemistries will open up new vistas for function and application of nucleic acids.
Collapse
Affiliation(s)
- Kwing Yeung Chan
- The University of Hong Kong, School of Biomedical Sciences, HONG KONG
| | | | | | - Julian Alexander Tanner
- The University of Hong Kong, School of Biomedical Sciences, 3/F Laboratory Block, 21 Sassoon Road, 000000, Pokfulam, HONG KONG
| |
Collapse
|
5
|
Levi-Acobas F, McKenzie LK, Hollenstein M. Towards polymerase-mediated synthesis of artificial RNA–DNA metal base pairs. NEW J CHEM 2022. [DOI: 10.1039/d2nj00427e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polymerase-mediated synthesis of RNA-DNA metal base pairs.
Collapse
Affiliation(s)
- Fabienne Levi-Acobas
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Luke K. McKenzie
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Marcel Hollenstein
- Institut Pasteur, Université de Paris, CNRS UMR3523, Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
6
|
Wang J, Wicher B, Méndez-Ardoy A, Li X, Pecastaings G, Buffeteau T, Bassani DM, Maurizot V, Huc I. Loading Linear Arrays of Cu II Inside Aromatic Amide Helices. Angew Chem Int Ed Engl 2021; 60:18461-18466. [PMID: 34014599 PMCID: PMC8456862 DOI: 10.1002/anie.202104734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The very stable helices of 8-amino-2-quinolinecarboxylic acid oligoamides are shown to uptake CuII ions in their cavity through deprotonation of their amide functions with minimal alteration of their shape, unlike most metallo-organic structures which generally differ from their organic precursors. The outcome is the formation of intramolecular linear arrays of a defined number of CuII centers (up to sixteen in this study) at a 3 Å distance, forming a molecular mimic of a metal wire completely surrounded by an organic sheath. The helices pack in the solid state so that the arrays of CuII extend intermolecularly. Conductive-AFM and cyclic voltammetry suggest that electrons are transported throughout the metal-loaded helices in contrast with hole transport observed for analogous foldamers devoid of metal ions.
Collapse
Affiliation(s)
- Jinhua Wang
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Alejandro Méndez-Ardoy
- ISM (UMR 5255), Univ. Bordeaux, CNRS, 351, Cours de la Libération, 33405, Talence, France
| | - Xuesong Li
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Gilles Pecastaings
- LCPO (UMR 5629), Bordeaux INP, CNRS, 16, Av. Pey-Berland, 33600, Pessac, France
- CRPP (UMR 5031), Univ. Bordeaux, CNRS, 115 Avenue du Dr Albert Schweitzer, 33600, Pessac, France
| | - Thierry Buffeteau
- ISM (UMR 5255), Univ. Bordeaux, CNRS, 351, Cours de la Libération, 33405, Talence, France
| | - Dario M Bassani
- ISM (UMR 5255), Univ. Bordeaux, CNRS, 351, Cours de la Libération, 33405, Talence, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600, Pessac, France
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandstraße 5-13, 81377, Munich, Germany
- Cluster of Excellence e-conversion, 85748, Garching, Germany
| |
Collapse
|
7
|
Wang J, Wicher B, Méndez‐Ardoy A, Li X, Pecastaings G, Buffeteau T, Bassani DM, Maurizot V, Huc I. Loading Linear Arrays of Cu
II
Inside Aromatic Amide Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinhua Wang
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
| | - Barbara Wicher
- Department of Chemical Technology of Drugs Poznan University of Medical Sciences Grunwaldzka 6 60-780 Poznan Poland
| | | | - Xuesong Li
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
| | - Gilles Pecastaings
- LCPO (UMR 5629) Bordeaux INP CNRS 16, Av. Pey-Berland 33600 Pessac France
- CRPP (UMR 5031) Univ. Bordeaux CNRS 115 Avenue du Dr Albert Schweitzer 33600 Pessac France
| | - Thierry Buffeteau
- ISM (UMR 5255) Univ. Bordeaux CNRS 351, Cours de la Libération 33405 Talence France
| | - Dario M. Bassani
- ISM (UMR 5255) Univ. Bordeaux CNRS 351, Cours de la Libération 33405 Talence France
| | - Victor Maurizot
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
| | - Ivan Huc
- CBMN (UMR 5248) Univ. Bordeaux CNRS Bordeaux INP 2 rue Robert Escarpit 33600 Pessac France
- Department of Pharmacy Ludwig-Maximilians-Universität Butenandstraße 5–13 81377 Munich Germany
- Cluster of Excellence e-conversion 85748 Garching Germany
| |
Collapse
|
8
|
Flamme M, Figazzolo C, Gasser G, Hollenstein M. Enzymatic construction of metal-mediated nucleic acid base pairs. Metallomics 2021; 13:6206861. [PMID: 33791776 DOI: 10.1093/mtomcs/mfab016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Artificial metal base pairs have become increasingly important in nucleic acids chemistry due to their high thermal stability, water solubility, orthogonality to natural base pairs, and low cost of production. These interesting properties combined with ease of chemical and enzymatic synthesis have prompted their use in several practical applications, including the construction of nanomolecular devices, ions sensors, and metal nanowires. Chemical synthesis of metal base pairs is highly efficient and enables the rapid screening of novel metal base pair candidates. However, chemical synthesis is limited to rather short oligonucleotides and requires rather important synthetic efforts. Herein, we discuss recent progress made for the enzymatic construction of metal base pairs that can alleviate some of these limitations. First, we highlight the possibility of generating metal base pairs using canonical nucleotides and then describe how modified nucleotides can be used in this context. We also provide a description of the main analytical techniques used for the analysis of the nature and the formation of metal base pairs together with relevant examples of their applications.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Université de Paris, 12 rue de l'École de Médecine, 75006 Paris, France.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Chiara Figazzolo
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Université de Paris, 12 rue de l'École de Médecine, 75006 Paris, France.,Centre de Recherches Interdisciplinaires CRI, 8 rue Charles V, 75004 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
9
|
Nakagawa O, Aoyama H, Fujii A, Kishimoto Y, Obika S. Crystallographic Structure of Novel Types of Ag I -Mediated Base Pairs in Non-canonical DNA Duplex Containing 2'-O,4'-C-Methylene Bridged Nucleic Acids. Chemistry 2021; 27:3842-3848. [PMID: 33274789 DOI: 10.1002/chem.202004819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Indexed: 11/08/2022]
Abstract
Metal-mediated base pairs have widespread applications, such as in DNA-metal nanodevices and sensors. Here, we focused on their sugar conformation in duplexes and observed the crystallographic structure of the non-canonical DNA/DNA duplex containing 2'-O,4'-C-methylene bridged nucleic acid in the presence of AgI ions. The X-ray crystallographic structure was successfully obtained at a resolution of 1.5 Å. A novel type of AgI -mediated base pair between the N1 positions of anti-conformation of adenines in the duplex was observed. In the central non-canonical region, a hexad nucleobase structure containing AgI -mediated base pairs between the N7 positions of guanines was formed. A highly bent non-canonical structure was formed at the origin of AgI -mediated base pairs in the central region. The bent duplex structure induced by the addition of AgI ions might become a powerful tool for dynamic structural changes in DNA nanotechnology applications.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan.,Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamahoji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Akane Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yuki Kishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Schönrath I, Tsvetkov VB, Barceló-Oliver M, Hebenbrock M, Zatsepin TS, Aralov AV, Müller J. Silver(I)-mediated base pairing in DNA involving the artificial nucleobase 7,8-dihydro-8-oxo-1,N 6-ethenoadenine. J Inorg Biochem 2021; 219:111369. [PMID: 33878529 DOI: 10.1016/j.jinorgbio.2021.111369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/22/2022]
Abstract
The artificial nucleobase 7,8-dihydro-8-oxo-1,N6-ethenoadenine (X) was investigated with respect to its ability to engage in Ag(I)-mediated base pairing in DNA. Spectroscopic data indicate the formation of dinuclear X-Ag(I)2-X homo base pairs and mononuclear X-Ag(I)-C base pairs (C, cytosine). Density functional theory calculations and molecular dynamics simulations indicate that the nucleobase changes from its lactam tautomeric form prior to the formation of the Ag(I)-mediated base pair to the lactim form after the incorporation of the Ag(I) ions. Fluorescence spectroscopy indicates that the two Ag(I) ions of the homo base pair are incorporated sequentially. Isothermal titration calorimetry confirms that the affinity of one of the Ag(I) ions is about tenfold higher than that of the other Ag(I) ion. The computational analysis by means of density functional theory confirms a much larger reaction energy for the incorporation of the first Ag(I) ion. The thermal stabilization upon the formation of the dinuclear Ag(I)-mediated homo base pair exceeds the one previously observed for the closely related nucleobase 1,N6-ethenoadenine by far, despite very similar structures. This additional stabilization may stem from the presence of water molecules engaged in hydrogen bonding with the additional oxygen atom of the artificial nucleobase X. The highly stabilizing Ag(I)-mediated base pair is a valuable addition to established dinuclear metal-mediated base pairs.
Collapse
Affiliation(s)
- Isabell Schönrath
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany
| | - Vladimir B Tsvetkov
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, 8/2 Trubetskaya Str., 119146 Moscow, Russia; Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia
| | - Miquel Barceló-Oliver
- Universitat de les Illes Balears, Departament de Química, carretera Valldemossa km 7.5, Ed. Mateu Orfila i Rotger, 07122 Palma de Mallorca, Spain
| | - Marian Hebenbrock
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory Str. 1-3, 119992 Moscow, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia.
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany.
| |
Collapse
|
11
|
Nakama T, Takezawa Y, Shionoya M. Site-specific polymerase incorporation of consecutive ligand-containing nucleotides for multiple metal-mediated base pairing. Chem Commun (Camb) 2021; 57:1392-1395. [PMID: 33438690 DOI: 10.1039/d0cc07771b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzymatic method has been developed for the synthesis of DNA oligomers containing consecutive artificial ligand-type nucleotides. Three hydroxypyridone ligand-containing nucleotides forming CuII-mediated unnatural base pairs were continuously incorporated at a pre-specified position by a lesion-bypass Dpo4 polymerase. This enzymatic synthesis was applied to the development of a CuII-responsive DNAzyme. Accordingly, this research will open new routes for the construction of metal-responsive DNA architectures that are manipulated by multiple metal-mediated base pairing.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
12
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|