1
|
Denikaev A, Kuznetsova Y, Bykov A, Zhilyakov A, Belova K, Abramov P, Moskalenko N, Skorb E, Grzhegorzhevskii K. Keplerate {Mo 132}-Stearic Acid Conjugates: Supramolecular Synthons for the Design of Dye-Loaded Nanovesicles, Langmuir-Schaefer Films, and Infochemical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7430-7443. [PMID: 38299992 DOI: 10.1021/acsami.3c16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Self-assembly gives rise to the versatile strategies of smart material design but requires precise control on the supramolecular level. Here, inorganic-organic synthons (conjugates) are produced by covalently grafting stearic acid tails to giant polyoxometalate (POM) Keplerate-type {Mo132} through an organosilicon linker (3-aminopropyltrimethoxysilane, APTMS). Using the liposome production approach, the synthons self-assemble to form hollow nanosized vesicles (100-200 nm in diameter), which can be loaded with organic dyes─eriochrome black T (ErChB) and fluorescein (FL)─where the POM layer serves as a membrane with subnanopores for cell-like communication. The dye structure plays an essential role in embedding dyes into the vesicle's shell, which opens the way to control the colloidal stability of the system. The produced vesicles are moved by an electric field and used for the creation of an infochemistry scheme with three types of logic gates (AND, OR, and IMP). To design 2D materials, synthons can form spread films, from simple addition on the water-air interface to lateral compression in the Langmuir bath, and highly ordered structures appear, demonstrating electron diffraction in Langmuir-Schaefer (LS) films. These results show the significant potential of POM-based synthons and nanosized vesicles to supramolecular design the diversity of smart materials.
Collapse
Affiliation(s)
- Andrey Denikaev
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
| | - Yulia Kuznetsova
- Institute of Solid State Chemistry of the Ural Branch of the RAS, 91, Pervomaiskaya St., 620990 Ekaterinburg, Russia
| | - Alexey Bykov
- Institute of Chemistry, St. Petersburg State University, Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Arkadiy Zhilyakov
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- M.N. Mikheev lnstitute of Metal Physics of Ural Branch of RAS,18 S. Kovalevskaya St., 620108 Ekaterinburg, Russia
| | - Ksenia Belova
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- Institute of High Temperature Electrochemistry of the Ural Branch of RAS, 22 S. Kovalevskoy St./20 Akademicheskaya St., 620066 Ekaterinburg, Russia
| | - Pavel Abramov
- Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Nikolai Moskalenko
- Institute of High Temperature Electrochemistry of the Ural Branch of RAS, 22 S. Kovalevskoy St./20 Akademicheskaya St., 620066 Ekaterinburg, Russia
| | - Ekaterina Skorb
- Infochemistry Scientific Center, ITMO University, Kronverksky Pr. 49, bldg. A, 197101 St. Petersburg, Russia
| | | |
Collapse
|
2
|
Li AJ, Huang SL, Yang GY. Anderson-type polyoxometalates for catalytic applications. Dalton Trans 2023. [PMID: 37997776 DOI: 10.1039/d3dt03274d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Anderson-type polyoxometalates have exhibited remarkable catalytic capabilities in a wide range of reactions. This discourse delves into the distinct categories of Anderson POMs and their respective catalytic reactions, which are examined in separate segments. These encompass the straightforward {XMo6} POMs, the organic grafting {XMo6} POMs, and the integration of POMs into POM cluster organic frameworks. It is important to highlight that specific catalytic functionalities can solely be accomplished via the utilization of Anderson-type POMs, thus emphasizing their indispensable role in future explorations.
Collapse
Affiliation(s)
- Ai-Juan Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
3
|
Huang ZW, Hu KQ, Mei L, Wang DG, Wang JY, Wu WS, Chai ZF, Shi WQ. Encapsulation of Polymetallic Oxygen Clusters in a Mesoporous/Microporous Thorium-Based Porphyrin Metal-Organic Framework for Enhanced Photocatalytic CO 2 Reduction. Inorg Chem 2022; 61:3368-3373. [PMID: 35164505 DOI: 10.1021/acs.inorgchem.1c04033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solar-initiated CO2 reduction is significant for green energy development. Herein, we have prepared a new mesoporous/microporous porphyrin metal-organic framework (MOF), IHEP-20, loaded with polymetallic oxygen clusters (POMs) to form a composite material POMs@IHEP-20 for visible-light-driven photocatalytic CO2 reduction. The as-made composite material exhibits good stability in water from pH 0 to 11. After POMs were introduced to IHEP-20, they showed superior activity toward photocatalytic CO2 reduction with a CO production rate of 970 μmol·g-1·h-1, which is 3.27 times higher than that of pristine IHEP-20. This study opens a new door for the design and synthesis of high-performance catalysts for the photocatalytic reduction of CO2.
Collapse
Affiliation(s)
- Zhi-Wei Huang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - De-Gao Wang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing-Yang Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wang-Suo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
A photosensitizer-polyoxometalate dyad that enables the decoupling of light and dark reactions for delayed on-demand solar hydrogen production. Nat Chem 2022; 14:321-327. [PMID: 35087218 DOI: 10.1038/s41557-021-00850-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 10/26/2021] [Indexed: 11/08/2022]
Abstract
Decoupling the production of solar hydrogen from the diurnal cycle is a key challenge in solar energy conversion, the success of which could lead to sustainable energy schemes capable of delivering H2 independent of the time of day. Here, we report a fully integrated photochemical molecular dyad composed of a ruthenium-complex photosensitizer covalently linked to a Dawson polyoxometalate that acts as an electron-storage site and hydrogen-evolving catalyst. Visible-light irradiation of the system in solution leads to charge separation and electron storage on the polyoxometalate, effectively resulting in a liquid fuel. In contrast to related, earlier dyads, this system enables the harvesting, storage and delayed release of solar energy. On-demand hydrogen release is possible by adding a proton donor to the dyad solution. The system is a minimal molecular model for artificial photosynthesis and enables the spatial and temporal separation of light absorption, fuel storage and hydrogen release.
Collapse
|
5
|
Maloul S, van den Borg M, Müller C, Zedler L, Mengele AK, Gaissmaier D, Jacob T, Rau S, Dietzek‐Ivanšić B, Streb C. Multifunctional Polyoxometalate Platforms for Supramolecular Light-Driven Hydrogen Evolution*. Chemistry 2021; 27:16846-16852. [PMID: 34719797 PMCID: PMC9299148 DOI: 10.1002/chem.202103817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Multifunctional supramolecular systems are a central research topic in light-driven solar energy conversion. Here, we report a polyoxometalate (POM)-based supramolecular dyad, where two platinum-complex hydrogen evolution catalysts are covalently anchored to an Anderson polyoxomolybdate anion. Supramolecular electrostatic coupling of the system to an iridium photosensitizer enables visible light-driven hydrogen evolution. Combined theory and experiment demonstrate the multifunctionality of the POM, which acts as photosensitizer/catalyst-binding-site[1] and facilitates light-induced charge-transfer and catalytic turnover. Chemical modification of the Pt-catalyst site leads to increased hydrogen evolution reactivity. Mechanistic studies shed light on the role of the individual components and provide a molecular understanding of the interactions which govern stability and reactivity. The system could serve as a blueprint for multifunctional polyoxometalates in energy conversion and storage.
Collapse
Affiliation(s)
- Salam Maloul
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | | | - Carolin Müller
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technologies (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | - Linda Zedler
- Leibniz Institute of Photonic Technologies (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Daniel Gaissmaier
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021 KarlsruheKarlsruheGermany
| | - Timo Jacob
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 364076021 KarlsruheKarlsruheGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technologies (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
6
|
Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C–H oxidations. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Cetindere S, Clausing ST, Anjass M, Luo Y, Kupfer S, Dietzek B, Streb C. Covalent Linkage of BODIPY-Photosensitizers to Anderson-Type Polyoxometalates Using CLICK Chemistry. Chemistry 2021; 27:17181-17187. [PMID: 34519409 PMCID: PMC9292257 DOI: 10.1002/chem.202102897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 11/18/2022]
Abstract
The covalent attachment of molecular photosensitizers (PS) to polyoxometalates (POMs) opens new pathways to PS‐POM dyads for light‐driven charge‐transfer and charge‐storage. Here, we report a synthetic route for the covalent linkage of BODIPY‐dyes to Anderson‐type polyoxomolybdates by using CLICK chemistry (i. e. copper‐catalyzed azide‐alkyne cycloaddition, CuAAC). Photophysical properties of the dyad were investigated by combined experimental and theoretical methods and highlight the role of both sub‐components for the charge‐separation properties. The study demonstrates how CLICK chemistry can be used for the versatile linkage of organic functional units to molecular metal oxide clusters.
Collapse
Affiliation(s)
- Seda Cetindere
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,Department of Chemistry, Faculty of Science, Gebze Technical University, 41400, Gebze/Kocaeli, Turkey
| | - Simon T Clausing
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Montaha Anjass
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,Helmholtz-Institute Ulm, Helmholtzstr. 11, 89081, Ulm, Germany
| | - Yusen Luo
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany.,Current address: Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich-Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,Helmholtz-Institute Ulm, Helmholtzstr. 11, 89081, Ulm, Germany
| |
Collapse
|
8
|
Wu P, Wang Y, Huang B, Xiao Z. Anderson-type polyoxometalates: from structures to functions. NANOSCALE 2021; 13:7119-7133. [PMID: 33889922 DOI: 10.1039/d1nr00397f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anderson-type polyoxometalates (POMs) are one of the most important groups of the POM family. In the past decade, the functionalization of Anderson-type POMs has achieved significant progress and these materials have already shown unique charm in catalysis, molecular devices, energy materials, and inorganic biochemical drugs. In particular, their highly flexible topological structure and diverse functionalization methods make them the most convenient and universal platforms for rational design and controllable synthesis. This review provides a deep discussion on the recent progress in the synthetic methodology, structural exploration, and promising applications of Anderson-type POMs. It also summarizes the latest research directions and provides future prospects.
Collapse
Affiliation(s)
- Pingfan Wu
- Institute of POM-based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | |
Collapse
|
9
|
Yu WD, Zhang Y, Han YY, Li B, Shao S, Zhang LP, Xie HK, Yan J. Microwave-Assisted Synthesis of Tris-Anderson Polyoxometalates for Facile CO 2 Cycloaddition. Inorg Chem 2021; 60:3980-3987. [PMID: 33626279 DOI: 10.1021/acs.inorgchem.1c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Four new tris-Anderson polyoxometalates (POMs), (NH4)4[ZnMo6O18(C4H8NO3)(OH)3]·4H2O (1), (NH4)4[CuMo6O18(C4H8NO3)(OH)3]·4H2O (2), (TBA)3(NH4)[ZnMo6O17(C5H9O3)2(OH)]·10H2O (3) (TBA = n-C16H36N), and (NH4)4[CuMo6O18(C5H9O3)2]·16H2O (4), were synthesized by a microwave-assisted method. Single-crystal X-ray diffraction revealed that 1 and 2 contained a tris (trihydroxyl organic compounds) ligand grafted on one side, while two tris ligands were grafted on two sides to form χ/δ and δ/δ isomers in 3 and 4, respectively. 1H and 13C NMR spectra of the χ/δ isomer 3 were obtained for the first time, with six methylenes showing six peaks in the 1H NMR spectrum and only four peaks in the 13C NMR spectrum. Mass spectrometry monitoring revealed that during the microwave-assistant process the tris ligand can graft onto POMs to form 1, while tris directly coordinates with metallic heteroatoms to form isopolymolybdates during the conventional reflux synthesis process. In addition, 1-4 can catalyze CO2 with epoxides into cyclic carbonates with high selectivity and yields at an atmospheric pressure of CO2, which is lower than the pressure of CO2 in other catalysis using POMs as catalysts. Furthermore, 1-4 showed good catalytic stability and cycling properties. Mechanism studies substantiated POMs cocatalyzed with Br- to improve the catalytic yields.
Collapse
Affiliation(s)
- Wei-Dong Yu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Yin Zhang
- Junior Education Department, Changsha Normal University, Changsha 410100, P. R. China
| | - Yu-Yang Han
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410000, P. R. China
| | - Bin Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410000, P. R. China
| | - Sai Shao
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Le-Ping Zhang
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Hong-Ke Xie
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Science, Changsha 410000, P. R. China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410000, P. R. China
| |
Collapse
|
10
|
Benazzi E, Karlsson J, Ben M'Barek Y, Chabera P, Blanchard S, Alves S, Proust A, Pullerits T, Izzet G, Gibson EA. Acid-triggering of light-induced charge-separation in hybrid organic/inorganic molecular photoactive dyads for harnessing solar energy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01368d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
H+ modulated charge-transfer in photoexcited covalently linked W and Mo Keggin-bodipy conjugates is demonstrated using transient absorption spectroscopy and photoluminescence. Adding acid switches on (W) or accelerates (Mo) charge separation.
Collapse
|