1
|
Li M, Li M, Geng H, Chen L, Xu L, Li X, Liu C. Sulfa-Michael Addition on Dehydroalanine: A Versatile Reaction for Protein Modifications. Org Lett 2024; 26:8329-8334. [PMID: 39311466 DOI: 10.1021/acs.orglett.4c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Chemical modification of proteins has been widely applied in diagnostic and therapeutic processes. Here, we report a novel bioconjugation between sulfinic acids and amino acid dehydroalanine (Dha) in the context of both small molecules and proteins. This conjugation enables the rapid formation of sulfone linkages in a chemoselective and disulfide-compatible manner under biocompatible conditions with Dha residues chemically installed in proteins and thus provides a robust tool that is simple and has exquisite site selectivity for protein functionalization in a wide range.
Collapse
Affiliation(s)
- Man Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, China
| | - Mengzhao Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongen Geng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linfeng Chen
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ludan Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, China
| | - Chunrong Liu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Na TU, Sander V, Davidson AJ, Lin R, Hermant YO, Hardie Boys MT, Pletzer D, Campbell G, Ferguson SA, Cook GM, Allison JR, Brimble MA, Northrop BH, Cameron AJ. Allenamides as a Powerful Tool to Incorporate Diversity: Thia-Michael Lipidation of Semisynthetic Peptides and Access to β-Keto Amides. Angew Chem Int Ed Engl 2024; 63:e202407764. [PMID: 38932510 DOI: 10.1002/anie.202407764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22 lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a β-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.
Collapse
Affiliation(s)
- Tae-Ung Na
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Veronika Sander
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Alan J Davidson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Rolland Lin
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Madeleine T Hardie Boys
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Daniel Pletzer
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Georgia Campbell
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Scott A Ferguson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Brian H Northrop
- Department of Chemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, U.S.A
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
3
|
He PY, Zhou Y, Chen PG, Zhang MQ, Hu JJ, Lim YJ, Zhang H, Liu K, Li YM. A Hydroxylamine-Mediated Amidination of Lysine Residues That Retains the Protein's Positive Charge. Angew Chem Int Ed Engl 2024; 63:e202402880. [PMID: 38758629 DOI: 10.1002/anie.202402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Lysine-specific peptide and protein modification strategies are widely used to study charge-related functions and applications. However, these strategies often result in the loss of the positive charge on lysine, significantly impacting the charge-related properties of proteins. Herein, we report a strategy to preserve the positive charge and selectively convert amines in lysine side chains to amidines using nitriles and hydroxylamine under aqueous conditions. Various unprotected peptides and proteins were successfully modified with a high conversion rate. Moreover, the reactive amidine moiety and derived modification site enable subsequent secondary modifications. Notably, positive charges were retained during the modification. Therefore, positive charge-related protein properties, such as liquid-liquid phase separation behaviour of α-synuclein, were not affected. This strategy was subsequently applied to a lysine rich protein to develop an amidine-containing coacervate DNA complex with outstanding mechanical properties. Overall, our innovative strategy provides a new avenue to explore the characteristics of positively charged proteins.
Collapse
Affiliation(s)
- Pei-Yang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yusai Zhou
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pu-Guang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Meng-Qian Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jin-Jian Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yeh-Jun Lim
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Beijing Institute for Brain Disorders, Beijing, 100069, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Yap SY, Butcher T, Spears RJ, McMahon C, Thanasi IA, Baker JR, Chudasama V. Chemo- and regio-selective differential modification of native cysteines on an antibody via the use of dehydroalanine forming reagents. Chem Sci 2024; 15:8557-8568. [PMID: 38846383 PMCID: PMC11151841 DOI: 10.1039/d4sc00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Protein modification has garnered increasing interest over the past few decades and has become an important tool in many aspects of chemical biology. In recent years, much effort has focused on site-selective modification strategies that generate more homogenous bioconjugates, and this is particularly so in the antibody modification space. Modifying native antibodies by targeting solvent-accessible cysteines liberated by interchain disulfide reduction is, perhaps, the predominant strategy for achieving more site-selectivity on an antibody scaffold. This is evidenced by numerous approved antibody therapeutics that have utilised cysteine-directed conjugation reagents and the plethora of methods/strategies focused on antibody cysteine modification. However, all of these methods have a common feature in that after the reduction of native solvent-accessible cystines, the liberated cysteines are all reacted in the same manner. Herein, we report the discovery and application of dehydroalanine forming reagents (including novel reagents) capable of regio- and chemo-selectively modifying these cysteines (differentially) on a clinically relevant antibody fragment and a full antibody. We discovered that these reagents could enable differential reactivity between light chain C-terminal cysteines, heavy chain hinge region cysteines (cysteines with an adjacent proline residue, Cys-Pro), and other heavy chain internal cysteines. This differential reactivity was also showcased on small molecules and on the peptide somatostatin. The application of these dehydroalanine forming reagents was exemplified in the preparation of a dually modified antibody fragment and full antibody. Additionally, we discovered that readily available amide coupling agents can be repurposed as dehydroalanine forming reagents, which could be of interest to the broader field of chemical biology.
Collapse
Affiliation(s)
- Steven Y Yap
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Tobias Butcher
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Richard J Spears
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Clíona McMahon
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
5
|
Yu C, E R, An Y, Guo X, Bao G, Li Y, Xie J, Sun W. Michael Addition Reaction between Dehydroalanines and Phosphites Enabled the Introduction of Phosphonates into Oligopeptides. Org Lett 2024. [PMID: 38780227 DOI: 10.1021/acs.orglett.4c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A method for introducing a range of phosphonates into oligopeptides through a Michael addition reaction between dehydroalanine and phosphite is presented. The method offers a mild, cheap, and straightforward approach to peptide phosphorylation that has potential applications in chemical biology and medicinal chemistry. Moreover, the introduction of a phosphonate group into short antibacterial peptides is described to demonstrate its utility, leading to the discovery of phosphonated antibacterial peptides with potent broad-spectrum antibacterial activity.
Collapse
Affiliation(s)
- Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yingying An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
6
|
Xiong B, Shi C, Ren Y, Xu W, Liu Y, Zhu L, Cao F, Tang KW, Yin SF. Zn-Catalyzed Dehydroxylative Phosphorylation of Allylic Alcohols with P(III)-Nucleophiles. J Org Chem 2024; 89:3033-3048. [PMID: 38372254 DOI: 10.1021/acs.joc.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel and efficient protocol for the synthesis of diarylallyl-functionalized phosphonates, phosphinates, and phosphine oxides through the zinc-catalyzed dehydroxylative phosphorylation of allylic alcohols with P(III)-nucleophiles via a Michaelis-Arbuzov-type rearrangement is reported. A broad range of allylic alcohols and P(III)-nucleophiles (P(OR)3, ArP(OR)2, and Ar2P(OR)) are well tolerated in this reaction, and the expected dehydroxylative phosphorylation products could be synthesized with good to excellent yields under the optimal reaction conditions. The reaction can be easily scaled up at a gram-synthesis level. Furthermore, through the step-by-step control experiments, kinetic study experiments, and 31P NMR tracking experiments, we acquired insights into the reaction and proposed the possible mechanism for this transformation.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Chonghao Shi
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yining Ren
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Fan Cao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
7
|
Bao G, Wang P, Guo X, Li Y, He Z, Song X, E R, Yu T, Xie J, Sun W. Visible-Light Mediated Deoxygenation of Carboxylic Acid for Late-Stage Peptide Modification Targeting Dehydroalanine. Org Lett 2023; 25:8338-8343. [PMID: 37966281 DOI: 10.1021/acs.orglett.3c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A visible-light mediated deoxygenative radical addition of carboxylic acids to dehydroalanines has been disclosed. The method can be used in β-acyl alanine derivative synthesis, including those chiral and deuterated variants, and late-stage peptide modification with various functional groups, both in the homogeneous phase and on the resin in SPPS. It provides a new tool kit for rapid construction of bioactive peptide analogues, which has been demonstrated by modification of the antimicrobial peptide Feleucin-K3.
Collapse
Affiliation(s)
- Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xinyi Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tingli Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
Zhang M, He P, Li Y. Light-initiated 1,3-dipolar cycloaddition between dehydroalanines and tetrazoles: application to late-stage peptide and protein modifications. Chem Sci 2023; 14:9418-9426. [PMID: 37712045 PMCID: PMC10498508 DOI: 10.1039/d3sc02818f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
As an easily introduced noncoded amino acid with unique electrophilicity distinct from the 20 natural amino acids, dehydroalanine (Dha) is not only a precise protein post-translational modification (PTM) insertion tool, but also a promising multifunctional labelling site for peptides and proteins. However, achieving a balance between the reaction rate and mild reaction conditions has been a major challenge in developing novel Dha-modified strategies. Rapid, efficient, and mild Dha modification strategies are highly desired. Additionally, catalyst-free photocontrollable reactions for Dha-containing peptide and protein modification have yet to be developed. Here, we report a photoinitiated 1,3-dipolar cycloaddition reaction between Dha and 2,5-diaryl tetrazoles. Under low-power UV lamp irradiation, this reaction is completed within minutes without catalysis, resulting in a fluorescent pyrazoline-modified peptide or protein with excellent chemoselectivity for Dha residues. Notably, this reaction exhibits complete site-specificity in the modification of thiostrepton, a natural antimicrobial peptide containing multiple Dha residues (Dha3, Dha16, and Dha17), within 20 minutes in high yields. This is currently the fastest reaction for modifying the Dha residue in thiostrepton with clear site-specificity towards Dha16. This photoinitiated reaction also provides a chemoselective strategy for precise functionalization of proteins. Additionally, the rapidity and efficiency of the reaction minimize UV light damage to the biological reaction system. Combined with fluorogenic properties, this photo-controllable methodology can be applied to live cell imaging, further broadening the application scope of the Dha modification methodology.
Collapse
Affiliation(s)
- Mengqian Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Peiyang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Yanmei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Beijing Institute for Brain Disorders Beijing 100069 P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
9
|
Awen A, Hu D, Gao D, Wang Z, Wu Y, Zheng H, Guan L, Mu Y, Sheng Z. Dual-modal molecular imaging and therapeutic evaluation of coronary microvascular dysfunction using indocyanine green-doped targeted microbubbles. Biomater Sci 2023; 11:2359-2371. [PMID: 36883518 DOI: 10.1039/d2bm02155b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Coronary microvascular dysfunction (CMD), which causes a series of cardiovascular diseases, seriously endangers human health. However, precision diagnosis of CMD is still challenging due to the lack of sensitive probes and complementary imaging technologies. Herein, we demonstrate indocyanine green-doped targeted microbubbles (named T-MBs-ICG) as dual-modal probes for highly sensitive near-infrared (NIR) fluorescence imaging and high-resolution ultrasound imaging of CMD in mouse models. In vitro results show that T-MBs-ICG can specifically target fibrin, a specific CMD biomarker, via the cysteine-arginine-glutamate-lysine-alanine (CREKA) peptide modified on the surface of microbubbles. We further employ T-MBs-ICG to achieve NIR fluorescence imaging of injured myocardial tissue in a CMD mouse model, leading to a signal-to-background ratio (SBR) of up to 50, which is 20 fold higher than that of the non-targeted group. Furthermore, ultrasound molecular imaging of T-MBs-ICG is obtained within 60 s after intravenous injection, providing molecular information on ventricular and myocardial structures and fibrin with a resolution of 1.033 mm × 0.466 mm. More importantly, we utilize comprehensive dual-modal imaging of T-MBs-ICG to evaluate the therapeutic efficacy of rosuvastatin, a cardiovascular drug for the clinical treatment of CMD. Overall, the developed T-MBs-ICG probes with good biocompatibility exhibit great potential in the clinical diagnosis of CMD.
Collapse
Affiliation(s)
- Alimina Awen
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Zihang Wang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Yayun Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
10
|
Zhang MQ, He PY, Hu JJ, Li YM. A rapid and selective methionine oxidative modification strategy. J Pept Sci 2023; 29:e3454. [PMID: 36181422 DOI: 10.1002/psc.3454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Considering the fact that site-selective late-stage diversification of peptides and proteins remains a challenge for biochemistry, strategies targeting low-abundance natural amino acids need to be further developed. As an extremely oxidation-sensitive and low-abundance amino acid, methionine emerges as a promising target for chemo- and site-selective modification. Herein we report an efficient and highly selective modification on methionine residues by one-pot O- and N-transfer reaction, generating sulfoximine-modified peptides with near-perfect conversion within 10 min. Moreover, the great tolerance to other natural amino acids has been demonstrated in reactions with various peptide substrates. To demonstrate the generality of this protocol, we have modified natural peptides and obtained sulfoximination products with high conversion rates. This methodology provides a novel strategy as the expansion of the methionine-based peptide functionalization toolbox.
Collapse
Affiliation(s)
- Meng-Qian Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Pei-Yang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jin-Jian Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Su JY, Li WH, Li YM. New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chem Soc Rev 2022; 51:7944-7970. [PMID: 35996977 DOI: 10.1039/d2cs00486k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunotherapy is recognised as an attractive method for the treatment of cancer, and numerous treatment strategies have emerged over recent years. Investigations of the tumour microenvironment (TME) have led to the identification of many potential therapeutic targets and methods. However, many recently applied immunotherapies are based on previously identified strategies, such as boosting the immune response by combining commonly used stimulators, and the release of drugs through changes in pH. Although methodological improvements such as structural optimisation and combining strategies can be undertaken, applying those novel targets and methods in immunotherapy remains an important goal. In this review, we summarise the latest research on the TME, and discuss how small molecules, immune cells, and their interactions with tumour cells can be regulated in the TME. Additionally, the techniques currently employed for delivery of these agents to the TME are also mentioned. Strategies to modulate cell phenotypes and interactions between immune cells and tumours are mainly discussed. We consider both modulatory and targeting methods aiming to bridge the gap between the TME and chemical modulation thereof.
Collapse
Affiliation(s)
- Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China. .,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China
| |
Collapse
|
12
|
Peng Q, Zang B, Xiong T, Huang C, Xu T, Zhang C, Ren J, Ji F, Jia L. Single and dual functionalization of proteins using site-specific nucleophilic carbon ligations. Chem Commun (Camb) 2022; 58:6316-6319. [PMID: 35522979 DOI: 10.1039/d2cc01630c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here found that while Meldrum's acid as the reactive warhead allows for the attachment of a single chemical modification on aldehyde-containing proteins, pyrazolone derivatives in combination with a phosphine nucleophile enable protein dual site-specific conjugation with the same or distinct moieties. These reactions are efficient and convergent under biocompatible conditions and allow access to protein bioconjugates with superior stability, homogeneity and flexibility. Our work expands the repertoire of bioconjugation chemistries and offers opportunities to construct bioconjugates with defined structure that have potential for medical and biomaterial applications.
Collapse
Affiliation(s)
- Qiang Peng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Berlin Zang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chundong Huang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Ting Xu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Chong Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
13
|
Zhang M, He P, Li Y. Contemporary Approaches to α,β-Dehydroamino Acid Chemical Modifications. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Li G, Hu J, Chen H, Chen YX, Li YM. Cucurbit[8]uril facilitated Michael addition for regioselective cysteine modification. Chem Commun (Camb) 2021; 57:6086-6089. [PMID: 34037637 DOI: 10.1039/d1cc01404h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing the interactions between tryptophan, methyl viologen and cucurbit[8]uril, we found that the distance between the targeted peptides/protein and the reactive peptide was shortened, which facilitated the Michael addition reaction between cysteine and dehydroalanine. The highest acceleration was observed on cysteines with suitable pKa and spatial location to tryptophan, suggesting that our system can be used for regioselective cysteine modification.
Collapse
Affiliation(s)
- Gao Li
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China.
| | - Jun Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Huai Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China. and Beijing Institute for Brain Disorders, Beijing 100069, China and Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|