1
|
Liu Z, Law YS, Kumar Verma R, Ling Goh Y, Eddy Wong MF, Sana B, Fan H, Lui Ang E, Hwee Lim Y. A Mn(salen)-Based Artificial Metalloenzyme for Nitrene and Oxene Transfer Catalysis. Chembiochem 2025; 26:e202400774. [PMID: 39667957 DOI: 10.1002/cbic.202400774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The development of artificial metalloenzymes (ArMs) offers a potent approach to incorporate non-natural chemical reactions into biocatalysis. Here we report the assembly of Mn(salen)-based ArMs by embedding biotinylated Mn(salen) complexes into streptavidin (Sav) variants. Using commercially available nitrene and oxo transfer reagents, these biohybrid catalysts catalyzed the aziridination of alkenes and oxidation of benzylic C-H bonds with up to 19 and 146 turnover numbers.
Collapse
Affiliation(s)
- Zhennan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore, 138665, Singapore
| | - Yee-Song Law
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore, 138669, Singapore
| | - Ravi Kumar Verma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Singapore
| | - Yi Ling Goh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore, 138665, Singapore
| | - Mun Fei Eddy Wong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore, 138665, Singapore
| | - Barindra Sana
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore, 138669, Singapore
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore, 138671, Singapore
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore, 138669, Singapore
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore, 138665, Singapore
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore
| |
Collapse
|
2
|
Hanreich S, Bonandi E, Drienovská I. Design of Artificial Enzymes: Insights into Protein Scaffolds. Chembiochem 2023; 24:e202200566. [PMID: 36418221 DOI: 10.1002/cbic.202200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The design of artificial enzymes has emerged as a promising tool for the generation of potent biocatalysts able to promote new-to-nature reactions with improved catalytic performances, providing a powerful platform for wide-ranging applications and a better understanding of protein functions and structures. The selection of an appropriate protein scaffold plays a key role in the design process. This review aims to give a general overview of the most common protein scaffolds that can be exploited for the generation of artificial enzymes. Several examples are discussed and categorized according to the strategy used for the design of the artificial biocatalyst, namely the functionalization of natural enzymes, the creation of a new catalytic site in a protein scaffold bearing a wide hydrophobic pocket and de novo protein design. The review is concluded by a comparison of these different methods and by our perspective on the topic.
Collapse
Affiliation(s)
- Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Elisa Bonandi
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam (The, Netherlands
| |
Collapse
|
3
|
Ebensperger P, Jessen-Trefzer C. Artificial metalloenzymes in a nutshell: the quartet for efficient catalysis. Biol Chem 2021; 403:403-412. [PMID: 34653321 DOI: 10.1515/hsz-2021-0329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Artificial metalloenzymes combine the inherent reactivity of transition metal catalysis with the sophisticated reaction control of natural enzymes. By providing new opportunities in bioorthogonal chemistry and biocatalysis, artificial metalloenzymes have the potential to overcome certain limitations in both drug discovery and green chemistry or related research fields. Ongoing advances in organometallic catalysis, directed evolution, and bioinformatics are enabling the design of increasingly powerful systems that outperform conventional catalysis in a growing number of cases. Therefore, this review article collects challenges and opportunities in designing artificial metalloenzymes described in recent review articles. This will provide an equitable insight for those new to and interested in the field.
Collapse
Affiliation(s)
- Paul Ebensperger
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, D-79104Freiburg i. Br., Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, D-79104Freiburg i. Br., Germany
| |
Collapse
|