1
|
Gao Y, Yang Z, Bajpai AK, Wang W, Zhang L, Xia Z. Resveratrol enhances the antiliver cancer effect of cisplatin by targeting the cell membrane protein PLA2. Front Oncol 2024; 14:1453164. [PMID: 39381045 PMCID: PMC11458693 DOI: 10.3389/fonc.2024.1453164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Background In this study, we aimed to explore the mechanism by which resveratrol promotes cisplatin-induced death of HepG2 cells and to provide a potential strategy for resveratrol in the treatment of cancer. Methods HepG2 cells were exposed to a range of drug concentrations for 24 h: resveratrol (2.5 μg/mL [10.95 μM], 5 μg/mL [21.91 μM], 10 μg/mL [43.81 μM], 20 μg/mL [87.62 μM], 40 μg/mL [175.25 μM], and 80 μg/mL [350.50 μM]), cisplatin (0.625 μg/mL [2.08 μM], 1.25 μg/mL [4.17 μM], 2.5 μg/mL [8.33 μM], 4.5 μg/mL [15.00 μM], and 10 μg/mL [33.33 μM]), 24 μg/mL (105.15 μM) resveratrol + 9 μg/mL (30.00 μM) cisplatin, and 12 μg/mL (52.57 μM) resveratrol + 4.5 μg/mL (15.00 μM) cisplatin. The interaction of two drugs was evaluated by coefficient of drug interaction (CDI), which was based on the Pharmacological Additivity model. The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect the effect of different concentrations of drugs on cell viability, while transcriptome sequencing was used to identify pathways associated with higher gene enrichment. Synchrotron radiation FTIR microspectroscopy experiments and data analysis were conducted to obtain detailed spectral information. The second-derivative spectra were calculated using the Savitzky-Golay algorithm. Single-cell infrared spectral absorption matrices were constructed to analyze the spectral characteristics of individual cells. The Euclidean distance between cells was calculated to assess their spectral similarity. The cell-to-cell Euclidean distance was computed to evaluate the spatial relationships between cells. The target protein of resveratrol was verified by performing a Western blot analysis. Results After 24 h of treatment with resveratrol, HepG2 cell growth was inhibited in a dose-dependent manner. Resveratrol promotes cisplatin-induced HepG2 cell death through membrane-related pathways. It also significantly changes the membrane components of HepG2 cells. Additionally, resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2. Conclusion Resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2 and promotes cisplatin-induced HepG2 cell death. The combination of cisplatin and resveratrol can play a synergistic therapeutic effect on HepG2 cells.
Collapse
Affiliation(s)
- Yu Gao
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhanyi Yang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenben Wang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Liyuan Zhang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhenhong Xia
- Department of Pharmacy, Binzhou Medical University, Yantai, China
- Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
2
|
Wang Y, Wang Y, Lü J, Li X. Unraveling the Drug Response Heterogeneity with Single-Cell Vibrational Phenomics. Cell Biochem Biophys 2024; 82:2503-2510. [PMID: 38914839 DOI: 10.1007/s12013-024-01363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/26/2024]
Abstract
Drug responses heterogeneity is often highlighted to justify the need for precision medicine. However, due to the highly complex nature of cell phenotypes in many diseases, one of key challenges is how to obtain the high content features in a cellular population. Here we present a single-cell vibrational phenomics approach, integrating synchrotron infrared microspectroscopy and multivariate calculation, for quantitatively evaluating the cellular responses to drug perturbation with single cell resolution. In a human hepatocellular carcinoma HepG2 cell model, the phenotypic changes induced by two types of drugs, taxol (TAX) and protopanaxadiol (PPD), were analyzed and revealed the response heterogeneity in drug concentration and chemical components. These findings not only provide a label-free strategy for determining the drug response at the single cell level, but also demonstrate the great potential of vibrational phenomics as a drug discovery platform.
Collapse
Affiliation(s)
- Yue Wang
- Collage of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yadi Wang
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Junhong Lü
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xueling Li
- Collage of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
3
|
Jia ZC, Yang X, Wu YK, Li M, Das D, Chen MX, Wu J. The Art of Finding the Right Drug Target: Emerging Methods and Strategies. Pharmacol Rev 2024; 76:896-914. [PMID: 38866560 PMCID: PMC11334170 DOI: 10.1124/pharmrev.123.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Drug targets are specific molecules in biological tissues and body fluids that interact with drugs. Drug target discovery is a key component of drug discovery and is essential for the development of new drugs in areas such as cancer therapy and precision medicine. Traditional in vitro or in vivo target discovery methods are time-consuming and labor-intensive, limiting the pace of drug discovery. With the development of modern discovery methods, the discovery and application of various emerging technologies have greatly improved the efficiency of drug discovery, shortened the cycle time, and reduced the cost. This review provides a comprehensive overview of various emerging drug target discovery strategies, including computer-assisted approaches, drug affinity response target stability, multiomics analysis, gene editing, and nonsense-mediated mRNA degradation, and discusses the effectiveness and limitations of the various approaches, as well as their application in real cases. Through the review of the aforementioned contents, a general overview of the development of novel drug targets and disease treatment strategies will be provided, and a theoretical basis will be provided for those who are engaged in pharmaceutical science research. SIGNIFICANCE STATEMENT: Target-based drug discovery has been the main approach to drug discovery in the pharmaceutical industry for the past three decades. Traditional drug target discovery methods based on in vivo or in vitro validation are time-consuming and costly, greatly limiting the development of new drugs. Therefore, the development and selection of new methods in the drug target discovery process is crucial.
Collapse
Affiliation(s)
- Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Yi-Kun Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Min Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Debatosh Das
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| |
Collapse
|
4
|
Wang Y, Wang Y, Li X, Lü J. Vibrational phenomics decoding of the stem cell stepwise aging process at single-cell resolution. Chem Commun (Camb) 2024; 60:3263-3266. [PMID: 38389443 DOI: 10.1039/d4cc00193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We introduce vibrational spectroscopy to quantitatively measure the phenotypic heterogeneity of senescent stem cells in the aging process at the single cell level. Using an aging model of serially passaged human mesenchymal stem cells (MSCs), we characterized the phenotypic changes of MSCs during different aged stages and discovered a stepwise aging process with several distinct subtypes.
Collapse
Affiliation(s)
- Yue Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yadi Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Xueling Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Junhong Lü
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
5
|
Sheng X, Wu J, Wu X, Gong L, Su M, Tang J, Yang D, Wang W. Quantitative biochemical phenotypic heterogeneity of senescent macrophage at a single cell level by Synchrotron Radiation Fourier Transform Infrared Microspectroscopy. Mikrochim Acta 2023; 190:416. [PMID: 37768393 PMCID: PMC10539409 DOI: 10.1007/s00604-023-05980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Macrophage senescence plays an important role in pathophysiological process of age-related diseases such as atherosclerosis, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and lung cancer. After macrophage senescence, the biochemical phenotypes related to biological functions showed great heterogeneity. However, the biochemical phenotype and phenotypic heterogeneity of senescent macrophage has not been fully understood. Exploring the phenotype of biochemical substances in senescent macrophage will be helpful for understanding the function of senescent macrophage and finding out the potential mechanism between immune macrophage senescence and age-related diseases. In this study, we employed SR-FTIR microspectroscopy to detect the biochemical phenotype and phenotypic heterogeneity of single macrophage. The whole infrared spectra of senescent macrophages shifted, indicating biochemical substance changes within senescent macrophages. PCA and intercellular Euclidean distance statistical analysis based on specific spectra regions revealed dynamic changes of lipids and proteins during macrophage senescence. This proved that SR-FTIR microspectroscopy is an effective tool to detect the single cell biochemical phenotype transformation and phenotypic heterogeneity during macrophage senescence. It is of great significance to provide an evaluation method or clue for the study of cellular functions related to intracellular biochemical substances.
Collapse
Affiliation(s)
- Xiaolong Sheng
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Jie Wu
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Xun Wu
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Lianghui Gong
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Min Su
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Jinming Tang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China
| | - Desong Yang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China.
| | - Wenxiang Wang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Changsha, China.
| |
Collapse
|
6
|
Sheng X, Xu J, Sun Y, Zhao J, Cao Y, Jiang L, Wu T, Lu H, Duan C, Hu J. Quantitative biochemical phenotypic heterogeneity of macrophages after myelin debris phagocytosis at a single cell level by synchrotron radiation fourier transform infrared microspectroscopy. Anal Chim Acta 2023; 1271:341434. [PMID: 37328242 DOI: 10.1016/j.aca.2023.341434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2023]
Abstract
During the immuno-inflammatory pathophysiological process of spinal cord injury, traumatic brain injury, and ischemic stroke, macrophages play an important role in phagocytizing and clearing degenerated myelin debris. After phagocytizing myelin debris, the biochemical phenotypes related to the biological function of macrophages show vast heterogeneity; however, it is not fully understood. Detecting biochemical changes after myelin debris phagocytosis by macrophages at a single-cell level is helpful to characterize phenotypic and functional heterogeneity. In this study, based on the cell model of myelin debris phagocytosis by macrophages in vitro, the biochemical changes in macrophages were investigated using Synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy. Infrared spectrum fluctuations, principal component analysis, and cell-to-cell Euclidean distance statistical analysis of specific spectrum regions revealed dynamic and significant changes in proteins and lipids within macrophages after myelin debris phagocytosis. Thus, SR-FTIR microspectroscopy is a powerful identification toolkit for exploring biochemical phenotype heterogeneity transformation that may be of great importance to providing an evaluation strategy for studying cell functions related to cellular substance distribution and metabolism.
Collapse
Affiliation(s)
- Xiaolong Sheng
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China; Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Liyuan Jiang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Hongbin Lu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China; Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.
| |
Collapse
|
7
|
Qian J, Wang Y, Li X, Lü J. Hydrogel microenvironment contributes to chemical-induced differentiation of mesenchymal stem cells: single-cell infrared microspectroscopy characterization. Anal Bioanal Chem 2023:10.1007/s00216-023-04746-z. [PMID: 37191714 DOI: 10.1007/s00216-023-04746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Stem cell microenvironment plays vital roles in directing cell proliferation and differentiation. Due to the tiny biochemical changes in the early stage of stem cell development, technical challenges to characterize the potential effects of environmental signals remain. In this work, we have introduced synchrotron radiation-based Fourier transform infrared microspectroscopy to evaluate the synergistic effects of physical and chemical factors on stem cell differentiation at the single-cell level. By using principal component analysis and cell-cell Euclidean distance calculation, the phenotypic heterogeneity changes during stem cell osteogenesis induced by lithium chloride or Wnt5a protein loaded in the polyvinyl alcohol (PVA) hydrogel were characterized in detail. The results demonstrated that PVA hydrogel could lead to the distinct effects between low-concentration lithium and wnt5a on human mesenchymal stem cells, suggesting a vital role of niche signals in Wnt pathway. These findings highlight the importance of microenvironment to the chemical-induced effects on stem cell differentiation and also provide a label-free, noninvasive method to sensitively identify the niche function in stem cell biology.
Collapse
Affiliation(s)
- Jiang Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Yadi Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xueling Li
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Junhong Lü
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
8
|
Shi Z, Guo M, Du H, Yang K, Liu X, Xu H. Investigation of cytotoxic cadmium in aquatic green algae by synchrotron radiation-based Fourier transform infrared spectroscopy: Role of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161870. [PMID: 36731571 DOI: 10.1016/j.scitotenv.2023.161870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The heavy metal Cd can cause severe toxicity on aquatic algae, but there are few studies on the cytotoxicity of heavy metal on algae based on synchrotron radiation technology. In this study, synchrotron radiation-based Fourier transform infrared spectromicroscopy (SR-FTIR) was used to characterize in vivo the toxic effects of Cd on Cosmarium sp. cells, emphasizing the influence of dissolved organic matter (DOM) on Cd toxicity. Results showed that, in the absence of DOM, obvious growth inhibition, cell volume reduction, and photosynthesis disruption could be observed with increasing Cd concentrations (0-500 μg/L). Based on the SR-FTIR imaging and functional group quantification, it was shown that the biosynthesis of biomolecules such as proteins, lipids, and carbohydrates was inhibited in algal cells. However, the addition of DOM caused significant heterogeneities in biomacromolecule biosynthesis that an increased biosynthesis of carbohydrates and structural lipids but an inhibited biosynthesis of proteins and storage lipids were observed. Furthermore, the correlation analysis and principal component analysis showed a good correlation between v(C-OH)/Amide II and biochemical parameters, indicating that changes of carbohydrates could be used as the biomarker to indicate the cytotoxicity of heavy metals to algal cells. These findings provide insight into the mechanisms of heavy metal cytotoxicity to aquatic algae and systematic cytotoxicity assessment under various aquatic conditions.
Collapse
Affiliation(s)
- Zhiqiang Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mengjing Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China.
| | - Haiyan Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Keli Yang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Xin Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Huacheng Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
9
|
Hao J, Chen Y, Zhu M, Zhao Y, Zhang K, Xu X. Spatial-Temporal Heterogeneity in Large Three-Dimensional Nanofibrillar Cellulose Hydrogel for Human Pluripotent Stem Cell Culture. Gels 2023; 9:gels9040324. [PMID: 37102936 PMCID: PMC10138276 DOI: 10.3390/gels9040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
One approach to cell expansion is to use large hydrogel for growing a large number of cells. Nanofibrillar cellulose (NFC) hydrogel has been used for human induced pluripotent stem cell (hiPSCs) expansion. However, little is known about the status of hiPSCs at the single cell level inside large NFC hydrogel during culture. To understand the effect of NFC hydrogel property on temporal-spatial heterogeneity, hiPSCs were cultured in 0.8 wt% NFC hydrogel with different thicknesses with the top surface exposed to the culture medium. The prepared hydrogel exhibits less restriction in mass transfer due to the presence of macropores and micropores interconnecting the macropores. More than 85% of cells at different depths survive after 5 days of culture inside 3.5 mm thick hydrogel. Biological compositions at different zones inside the NFC gel were examined over time at a single-cell level. A dramatic concentration gradient of growth factors estimated in the simulation along 3.5 mm NFC hydrogel could be a reason for the spatial-temporal heterogeneity in protein secondary structure and protein glycosylation and pluripotency loss at the bottom zone. pH change caused by the lactic acid accumulation over time leads to changes in cellulose charge and growth factor potential, probably another reason for the heterogeneity in biochemical compositions. This study may help to develop optimal conditions for producing high-quality hiPSCs in large nanofibrillar cellulose hydrogel at scale.
Collapse
Affiliation(s)
- Jin Hao
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Ying Chen
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Mingjian Zhu
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Yingqing Zhao
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Kai Zhang
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Xia Xu
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan 243002, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243002, China
| |
Collapse
|
10
|
Wang Y, Gao Y, Li X, Tian G, Lü J. Single-cell infrared phenomics identifies cell heterogeneity of individual pancreatic islets in mouse model. Anal Chim Acta 2023; 1258:341185. [PMID: 37087295 DOI: 10.1016/j.aca.2023.341185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Identifying the islet heterogeneity (cell types and the proportion of each subpopulation) and their relevance to function and disease will lead to fundamental information for the prevention and therapies of diabetes. Here, we introduce a single-cell phenotypic essay on the heterogeneity within individual pancreatic islets by using the combination of synchrotron infrared microspectroscopy and quantitative calculation. In a mouse model, the cellular heterogeneities at both the whole pancreas and single intact islet level were identified. The variation of biochemical phenotypes successfully subdivided islet cells into five main groups and quantitatively determined their proportion. These findings not only demonstrate single-cell infrared phenomics as a value complementary technique and strategy for the description of cellular heterogeneity within the pancreatic islets but also provide a quick, label-free optical platform for investigating phenotypic heterogeneity at the small-organelle level with single cell resolution.
Collapse
|
11
|
Synchrotron Infrared Microspectroscopy for Stem Cell Research. Int J Mol Sci 2022; 23:ijms23179878. [PMID: 36077277 PMCID: PMC9456088 DOI: 10.3390/ijms23179878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Stem cells have shown great potential functions for tissue regeneration and repair because of their unlimited self-renewal and differentiation. Stem cells reside in their niches, making them a hotspot for the development and diagnosis of diseases. Complex interactions between niches and stem cells create the balance between differentiation, self-renewal, maturation, and proliferation. However, the multi-facet applications of stem cells have been challenged since the complicated responses of stem cells to biological processes were explored along with the limitations of current systems or methods. Emerging evidence highlights that synchrotron infrared microspectroscopy, known as synchrotron radiation-based Fourier transform infrared microspectroscopy, has been investigated as a potentially attractive technology with its non-invasive and non-biological probes in stem cell research. With their unique vibration bands, the quantitative mapping of the content and distribution of biomolecules can be detected and characterized in cells or tissues. In this review, we focus on the potential applications of synchrotron infrared microspectroscopy for investigating the differentiation and fate determination of stem cells.
Collapse
|