1
|
Zhan C, Zhang J, Hao J, Liu Z, Hu C. Scalable drop-casting construction of light-addressable photoelectrochemical biosensor on laser-induced graphene electrode arrays for high-throughput drug screening. Biosens Bioelectron 2024; 261:116497. [PMID: 38878700 DOI: 10.1016/j.bios.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
A drop-casting method for the scalable construction of a solar cell-type light-addressable photoelectrochemical (PEC) sensor on commercial phenol resin (PR) plates is reported. The sensor was fabricated by laser writing of addressable laser-induced graphene (LIG) electrode arrays on PR plates with ring-disc dual-electrode cell configurations using a 405 nm laser machine. Beneficial from the good hydrophilicity of PR-based LIG and the excellent film formation of bismuth sulfide nanorods (Bi2S3 NRs), uniform Bi2S3 photovoltaic films can be reproducibly deposited onto the LIG disc photoanode array via drop casting modification, which show a sensitive photocurrent response toward thiocholine (TCl) when the ring cathode array was coated with Ag/AgCl. An acetylcholinesterase (AChE)-based PEC biosensor was therefore constructed by a similar drop-casting modification method. The resulting biosensor exhibits good sensitivity toward an AChE inhibitor, i.e., galantamine hydrobromide (GH), with a calibration range of 10-300 μM and a detection limit of 7.33 μM (S/N = 3). Moreover, the biosensor possesses good storage stability, which can achieve the high-throughput screening of AChE inhibitor drugs from traditional Chinese medicines (TCMs). The present work thus demonstrates the promising application of LIG technology in constructing light-addressable PEC sensing devices with high performance and low cost.
Collapse
Affiliation(s)
- Chen Zhan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiahui Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Junxing Hao
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Zhihong Liu
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Qiu Z, Yang Y, Xue X, Chen Y, Tang D. Laser-induced CdS/TiO 2/graphene dual photoanodes for ratiometric self-powered photoelectrochemical sensor: an innovative approach for aflatoxin B1 detection. Mikrochim Acta 2024; 191:630. [PMID: 39331214 DOI: 10.1007/s00604-024-06721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
A ratiometric self-powered photoelectrochemical sensor based on laser direct writing technology was constructed to address the problem that the conventional single-signal detection mode was susceptible to the influence of instrumentation and environmental factors, which interfered with the detection results. Laser-induced CdS/TiO2/Graphene was prepared as dual photoanodes (PA1 and PA2), which were controlled by multiplexed switches to form a photocatalytic fuel cell with Pt cathode. By modifying the aptamer of aflatoxin B1 (AFB1) on the photoanode surface, the target was specifically captured to the electrode surface to form a biological complex, which increased the steric hindrance and affected the electron transfer, thus reducing the output signal of the sensor. Targets with different concentrations were incubated on the surface of PA1, and targets with fixed concentrations were incubated on the surface of PA2. Under the control of the multiplex switch, the output signals of the two photoanodes were recorded, and the ratio of these two signals was used as the basis for the quantitative detection of AFB1. The sensor output was linearly increasing with the logarithm of AFB1 concentration from 1.0 to 150 ng mL-1 and the detection limit was 0.0974 ng mL-1. Additionally, this method had good stability, fast response, and good selectivity to real samples, providing an effective method for food safety monitoring.
Collapse
Affiliation(s)
- Zhenli Qiu
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, People's Republic of China
| | - Ying Yang
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, People's Republic of China
| | - Xianghang Xue
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, People's Republic of China
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
3
|
Liu X, Cheng H, Zhao Y, Wang Y, Ge L, Huang Y, Li F. Immobilization-free dual-aptamer-based photoelectrochemical platform for ultrasensitive exosome assay. Talanta 2024; 266:125001. [PMID: 37517342 DOI: 10.1016/j.talanta.2023.125001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Exosomes, involved in cancer-specific biological processes, are promising noninvasive biomarkers for early diagnosis of cancer. Herein, an immobilization-free dual-aptamer-based photoelectrochemical (PEC) biosensor was proposed for the enrichment and quantification of cancer exosome based on photoactive bismuch oxyiodide/gold/cadmium sulfide (BiOI/Au/CdS) composites, nucleic acid-based recognition and signal amplification. In this biosensor, the recognition of exosome by two aptamers would trigger the deoxyribonucleotidyl transferase (TdT) enzyme-aided polymerization, leading to the enrichment of alkaline phosphatase (ALP) on Fe3O4 surface. After magnetic separation, ALP could catalyze the generation of ascorbic acid (AA) as electron donor and initiate the following redox cycle reaction for further signal amplification. Furthermore, all the above processes were performed in solution, the recognition and signal amplification efficiency would be superior than the heterogeneous strategy owing to the avoidance of steric hindrance effect. As a result, the proposed PEC biosensor was capable of enriching and detecting of cancer exosomes with high sensitivity and selectivity. The linear range of the biosensor was from 1.0 × 102 particles·μL-1 to 1.0 × 106 particles·μL-1 and the detection limit was estimated to be 21 particles·μL-1. Therefore, the proposed PEC biosensor holds great promise in quantifying tumor exosome for nondestructive early clinical cancer diagnosis and various other bioassay applications.
Collapse
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Hao Cheng
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yuecan Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yiping Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
4
|
Hong Q, Zhu W, Wang S, Jiang L, He J, Zhan J, Li X, Zhao X, Zhao B. High-Resolution Femtosecond Laser-Induced Carbon and Ag Hybrid Structure for Bend Sensing. ACS OMEGA 2022; 7:42256-42263. [PMID: 36440162 PMCID: PMC9685746 DOI: 10.1021/acsomega.2c05060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Miniaturized resistance-based portable bending sensors have been widely used for human health monitoring in recent years. Their sensitivities are defined by their resistance variations (ΔR/R), which strongly rely on the conductivity and minimum line width of the sensing unit. Laser-induced carbonization is a fast and simple method to fabricate porous-sensing structures. However, the fabrication resolution of conductive and deformation-sensitive structures is limited by the thermal effect of commonly used laser sources. With the assistance of femtosecond laser temporal shaping, plasma ejection confinement, and silver nitrate doping, the sheet resistance of the sensing structure was improved from 15 to 0.0004 Ω/□. A thin line with a lateral resolution of 6.5 μm is fabricated as the sensing unit. The fFabricated structures are characterized by electron microscopy, Raman spectroscopy, energy-dispersive spectroscopy, X-ray scattering, and time-resolved images. The strain sensor demonstrates a ΔR/R of 25.8% with a rising edge of 109 ms in the cyclic bending test. The sensor is further applied for detecting human pulse and finger bending.
Collapse
Affiliation(s)
- Quan Hong
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Weihua Zhu
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Sumei Wang
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Lan Jiang
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Jiahua He
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Jie Zhan
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
| | - Xin Li
- Laser
Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Xiaoming Zhao
- Tianjin
Navigation Instruments Research Institute, No. 268 Dingzigu No. 1 Street,
Hong Qiao District, Tianjin 300131, China
| | - Bingquan Zhao
- Tianjin
Navigation Instruments Research Institute, No. 268 Dingzigu No. 1 Street,
Hong Qiao District, Tianjin 300131, China
| |
Collapse
|
5
|
Xin Y, Wang Z, Yao C, Shen H, Miao Y. Bismuth, a Previously Less‐studied Element, Is Bursting into New Hotspots. ChemistrySelect 2022. [DOI: 10.1002/slct.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanmei Xin
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Zhuo Wang
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Congfei Yao
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Haocheng Shen
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science School of Materials and Chemistry University of Shanghai for Science and Technology Jungong Rd 334# Shanghai 200093 China
| |
Collapse
|
6
|
A Laser-Induced Photoelectrochemical Sensor for Natural Sweat Cu2+ Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tracking fluctuations in the Cu2+ level in sweat is meaningful for non-invasive and real-time assessment of Cu2+-abnormality-related diseases and provides important diagnostic information. However, the user-unfriendly ways to obtain sweat and sweat biofouling have limited the development of this field. Herein, we exploit a highly sensitive photoelectrochemical (PEC) sensor as a detection method, a powerful laser engraving technique for the large-scale fabrication of laser-induced graphene and In-doped CdS (LIG-In-CdS) photoelectrodes, and a hydrophilic porous polyvinyl alcohol (PVA) hydrogel for natural sweat collection for fingertip touch sweat Cu2+ monitoring. The proposed sensor has several very attractive features: (i) the LIG-In-CdS photoelectrode with high photoelectric conversion efficiency can be produced by a cheap 450 nm semiconductor laser system; (ii) the sensor performs Cu2+ detection with a wide linear range of 1.28 ng/mL~5.12 μg/mL and good selectivity; (iii) the PVA hydrogel possesses an excellent antifouling effect ability and a rapid natural sweat collection ability; and (iv) the sensor exhibits feasibility and good reliability for PEC sensing of sweat Cu2+. Thus, these advantages endow the proposed method with a great deal of potential for smart monitoring of heavy metals in sweat in the future.
Collapse
|
7
|
Non-noble metal Bi/BiVO4 photoanode for surface plasmon resonance-induced photoelectrochemical biosensor of hydrogen peroxide detection. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Dong B, Sun T, Jiang X, Guo P, Yang G, Wang F. Self-passivated CuV 2O 6 as a universal photoelectrode material for reliable and accurate photoelectrochemical sensing. Chem Commun (Camb) 2021; 57:7402-7405. [PMID: 34227620 DOI: 10.1039/d1cc02891j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photoelectrochemical (PEC) detection has attracted intensive attention during the past decade. Currently, most research focuses on improving the sensitivity and selectivity of the PEC sensor, but the issue of the stability of the photoelectrode material under the testing environment is often ignored or lacks in-depth investigation. Herein, we develop a novel CuV2O6 photoelectrode exhibiting superior stability under the testing environment through self-passivation. CuV2O6-based PEC sensors are fabricated for the first time for highly selective carcinoembryonic antigen (CEA) and human serum alpha fetoprotein (AFP) detection. The CuV2O6 shows great potential as a universal photoelectrode material for reliable and accurate PEC detection of macromolecules.
Collapse
Affiliation(s)
- Boheng Dong
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences, National Analytical Center, Guangzhou, China. and School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tingting Sun
- Department of Gynecology, Sun Yat-Sen University First Affiliated Hospital, No. 58, Zhongshan Road II, Guangzhou 510080, China
| | - Xiang Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences, National Analytical Center, Guangzhou, China.
| | - Guofen Yang
- Department of Gynecology, Sun Yat-Sen University First Affiliated Hospital, No. 58, Zhongshan Road II, Guangzhou 510080, China
| | - Fuxian Wang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences, National Analytical Center, Guangzhou, China.
| |
Collapse
|