1
|
Szabelski P. Theoretical Modeling of the Structure Formation in Adsorbed Overlayers Comprising Molecular Building Blocks with Different Symmetries. Molecules 2025; 30:866. [PMID: 40005176 PMCID: PMC11858382 DOI: 10.3390/molecules30040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Controlling the geometry and functionality of multi-component self-assembled superstructures on surfaces is a complex task that requires numerous experimental tests. In this contribution, we demonstrate how computer modeling can be utilized to preselect functional tectons capable of forming low-dimensional architectures with tailored features. To this end, coarse-grained Monte Carlo simulations were conducted for a mixture of tripod and tetrapod units, each equipped with discrete centers for short-range directional interactions, and adsorbed onto a (111) crystalline substrate. The calculations conducted for various isomers of the tetrapod molecule revealed qualitatively distinct self-assembly scenarios, including mixing and segregation, depending on the directionality of interactions assigned to this tecton. The resulting superstructures were classified, and their formation was monitored using temperature-dependent metrics, such as coordination functions. The findings of this study contribute to a better understanding of the on-surface self-assembly of molecules with differing symmetries and can aid in the design of bicomponent overlayers for specific applications.
Collapse
Affiliation(s)
- Paweł Szabelski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Pl. M.C. Skłodowskiej 3, 20-031 Lublin, Poland
| |
Collapse
|
2
|
Xie R, Zeng X, Jiang ZH, Hu Y, Lee SL. STM Study of the Self-Assembly of Biphenyl-3,3',5,5'-Tetracarboxylic Acid and Its Mixing Behavior with Coronene at the Liquid-Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3637-3644. [PMID: 36867761 DOI: 10.1021/acs.langmuir.2c03199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report a scanning tunneling microscopy (STM) study of the molecular self-assembly of biphenyl-3,3',5,5'-tetracarboxylic acid (BPTC) at the octanoic acid/graphite interface. STM revealed that the BPTC molecules generated stable bilayers and monolayers under high and low sample concentrations, respectively. Besides hydrogen bonds, the bilayers were stabilized by molecular π-stacking, whereas the monolayers were maintained by solvent co-adsorption. A thermodynamically stable Kagomé structure was obtained upon mixing BPTC with coronene (COR), while kinetic trapping of COR in the co-crystal structure was found by the subsequent deposition of COR onto a preformed BPTC bilayer on the surface. Force field calculation was conducted to compare the binding energies of different phases, which helped to provide plausible explanations for the structural stability formed via kinetic and thermodynamic pathways.
Collapse
Affiliation(s)
- Rongbin Xie
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Xingming Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Zhi-Heng Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
| |
Collapse
|
3
|
Sahare S, Ghoderao P, Chan Y, Lee SL. Surface supramolecular assemblies tailored by chemical/physical and synergistic stimuli: a scanning tunneling microscopy study. NANOSCALE 2023; 15:1981-2002. [PMID: 36515142 DOI: 10.1039/d2nr05264d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular self-assemblies formed by various non-covalent interactions can produce diverse functional networks on solid surfaces. These networks have recently attracted much interest from both fundamental and application points of view. Unlike covalent organic frameworks (COFs), the properties of the assemblies differ from each other depending on the constituent motifs. These various motifs may find diverse applications such as in crystal engineering, surface modification, and molecular electronics. Significantly, these interactions between/among the molecular tectonics are relatively weak and reversible, which makes them responsive to external stimuli. Moreover, for a liquid-solid-interface environment, the dynamic processes are amenable to in situ observation using scanning tunneling microscopy (STM). In the literature, most review articles focus on supramolecular self-assembly interactions. This review summarizes the recent literature in which stimulation sources, including chemical, physical, and their combined stimuli, cooperatively tailor supramolecular assemblies on surfaces. The appropriate design and synthesis of functional molecules that can be integrated on different surfaces permits the use of nanostructured materials and devices for bottom-up nanotechnology. Finally, we discuss synergic effect on materials science.
Collapse
Affiliation(s)
- Sanjay Sahare
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
- Faculty of Physics, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Prachi Ghoderao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yue Chan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
4
|
Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G. Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications. ACS NANO 2022; 16:19789-19809. [PMID: 36454684 DOI: 10.1021/acsnano.2c08145] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.
Collapse
Affiliation(s)
- Shenli Wang
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Xing Liu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stefanos Mourdikoudis
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Jie Chen
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001, P. R. China
| | - Weiwei Fu
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628, Prague 6, Czech Republic
| | - Yuan Zhang
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan430072, P. R. China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
Yan L, Li S, Song X, Wang Z, Lu Y, Gu S, Liu X, Wang L. Chirality recognition and separation of 4-ethynyltriphenylamine induced by chiral Kagomé network on Cu (1 1 1). Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|