1
|
Liu X, Zhang J. Progress in Double Dearomatization Reactions. Chemistry 2025; 31:e202404640. [PMID: 39887834 DOI: 10.1002/chem.202404640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Dearomatization reactions are among the most straightforward and efficient methods for creating sp3-rich cyclic systems from simple, readily available arenes. These reactions have been widely applied in the total synthesis of natural products, medicinal chemistry, and material sciences. The fruitful development of dearomatization strategies and methodologies targeting single aromatic substrate over the past decades has paved the way for more sophisticated multiple dearomatization processes, which offer greater advantages in constructing molecular complexity. Double dearomatization reactions have made significant pioneering strides in recent years. This review will provide an overview of the strategies and detailed examples of multiple dearomatization reactions involving various aromatic compounds, along with a discussion of the related mechanisms and the major challenges that remain in this intriguing yet formidable field.
Collapse
Affiliation(s)
- Xihong Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Birbaum L, Ndiaye M, Hachem M, Perrio S, De Paolis M, Chataigner I. Dearomative (3 + 2) Cycloadditions of 3-Nitroheteroarenes with Allenyl Sulfones Mediated by Ion Pair Organocatalysis. Org Lett 2025; 27:1729-1734. [PMID: 39921640 DOI: 10.1021/acs.orglett.5c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
We report the first example of dearomative (3 + 2) cycloadditions of 3-nitro(aza)-indole, -benzofuran, and -benzothiophene derivatives in the presence of allenyl sulfones, using sulfinate ammonium ion pairs as organocatalytic promoters. The methodology provides a new, facile, and efficient protocol for the synthesis of functionalized 2,3-fused cyclopentannulated indolines and dihydrobenzofurans.
Collapse
Affiliation(s)
- Léo Birbaum
- Université de Rouen Normandie, CNRS, Normandie Université, INSA Rouen Normandie, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Moussa Ndiaye
- Université de Rouen Normandie, CNRS, Normandie Université, INSA Rouen Normandie, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Mahmoud Hachem
- Université de Rouen Normandie, CNRS, Normandie Université, INSA Rouen Normandie, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Stéphane Perrio
- Université de Caen Normandie, ENSICAEN, CNRS, LCMT, Normandie Université, 14000 Caen, France
| | - Michael De Paolis
- Université de Rouen Normandie, CNRS, Normandie Université, INSA Rouen Normandie, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Isabelle Chataigner
- Université de Rouen Normandie, CNRS, Normandie Université, INSA Rouen Normandie, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT UMR7616, 75005 Paris, France
| |
Collapse
|
3
|
Mi Y, Liu S, Hu L, Wang Y, Luo R, Yu Y, Zhang Z, Yuan S, Lu G, Huang X. Three-component diels-alder reaction through palladium carbene migratory insertion enabled dearomative C(sp 3)-H bond activation. Nat Commun 2024; 15:10844. [PMID: 39738005 DOI: 10.1038/s41467-024-55190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Owning to the versatile nature in participation of Diels-Alder (D-A) reactions, the development of efficient approaches to generate active ortho-quinodimethanes (o-QDMs) has gained much attention. However, a catalytic method involving coupling of two readily accessible components to construct o-QDMs is lacking. Herein, we describe a palladium carbene migratory insertion enabled dearomative C(sp3)-H activation to form active o-QDM species through the cross-coupling of N-tosylhydrazones with aryl halides. The in situ generated o-QDM intermediates were trapped efficiently by 3-nitroindoles and N-sulfonylaldimines to provide dihydroindolo[2,3-b]carbazole derivatives and indole alkaloids modularly. To our knowledge, this reaction represents a rare example on three-component D-A cycloaddition through in situ generation of conjugated dienes by the coupling two readily available materials. We anticipate such a reaction mode could find broad application on diversity oriented six-membered ring construction. Deuterium labeling experiments and density functional theory calculations support a pathway through reversible C(sp3)-H activation to generate heterocyclic o-QDMs.
Collapse
Affiliation(s)
- Yiman Mi
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Shuoyue Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, China
| | - Yihua Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Renhui Luo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yinghua Yu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhiyang Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Shan Yuan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, China.
| | - Xueliang Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Chouhan R, Das SK. Interrupted Plancher Rearrangement Initiated by Dearomative Epoxide-Indole Cyclization: Formal Umpolung Reactivity of Indoles. Org Lett 2024; 26:11156-11161. [PMID: 39668334 DOI: 10.1021/acs.orglett.4c04215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We herein report the serendipitous discovery of the interrupted Plancher rearrangement initiated by an HFIP-promoted dearomative epoxide-indole cyclization, unlocking a new blueprint to the formal C3 umpolung reactivity of indoles. This rapid complexity generating cascade process paves the way toward a new class of fused-bridged indolines in high yields and under full regio- and diastereocontrol. The reaction is amenable to a wide range of substituents in the starting materials.
Collapse
Affiliation(s)
- Raju Chouhan
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam, India 784028
| | - Sajal Kumar Das
- Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam, India 784028
| |
Collapse
|
5
|
Powderly M, Roseau M, Frison G, Hammami R, Chausset-Boissarie L, Harrowven D, Legros J, Chataigner I. Controlling Diastereoselectivity in Dearomatizing Diels-Alder Reactions of Nitroarenes with 2-Trimethylsilyloxycyclohexadiene. Chemistry 2024; 30:e202303697. [PMID: 38619531 DOI: 10.1002/chem.202303697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Dearomative Diels-Alder cycloadditions between nitroarenes and 2-trimethylsilyloxycyclohexadiene are carried out under high pressure at room temperature in the absence of any chemical promoter. Reactions are performed with different arenes, including the highly aromatic naphthalenes and quinolines. They lead to 3D-scaffolds with exquisite exo-diastereoselectivity. The exo approach is characterized by lower distortion of the substrates in a late TS and by more favorable orbital interactions presumably between the nitro group and the dienic part, explaining the stereoselectivity.
Collapse
Affiliation(s)
- Marian Powderly
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
- Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Mélanie Roseau
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
| | - Gilles Frison
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F-75005, Paris, France
| | - Rayhane Hammami
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
| | - Laetitia Chausset-Boissarie
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
| | - David Harrowven
- Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Julien Legros
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
| | - Isabelle Chataigner
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3 M FR 3038, 76000, Rouen, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F-75005, Paris, France
| |
Collapse
|
6
|
Dou PH, Fu XH, Chen Y, Ge ZZ, Zhou MQ, Wang ZH, You Y, Yang L, Zhang YP, Zhao JQ, Yuan WC. Palladium-Catalyzed Asymmetric Decarboxylation of 5-Vinyloxazolidine-2,4-Diones Triggering the Dearomatization of Electron-Deficient Indoles for the Synthesis of Chiral Highly Functionalized Pyrroloindolines. Org Lett 2024; 26:3310-3315. [PMID: 38587335 DOI: 10.1021/acs.orglett.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A catalyst system consisting of a chiral phosphoramidite ligand and Pd2(dba)3·CHCl3 causes the decarboxylation of 5-vinyloxazolidine-2,4-diones to generate amide-containing aza-π-allylpalladium 1,3-dipole intermediates, which are capable of triggering the dearomatization of 3-nitroindoles for diastereo- and enantioselective [3+2] cycloaddition, leading to the formation of a series of highly functionalized pyrroloindolines containing three contiguous stereogenic centers with excellent results (up to 99% yield, 88:12 dr, and 96% ee).
Collapse
Affiliation(s)
- Pei-Hao Dou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hui Fu
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen-Zhen Ge
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Babu SA, A A, Mohan M, Paul N, Mathew J, John J. Tandem Reactions of Electrophilic Indoles toward Indolizines and Their Subsequent Transformations through Pd(II)-Mediated C-H Functionalization to Access Polyring-Fused N-Heterocycles. ACS OMEGA 2024; 9:16196-16206. [PMID: 38617644 PMCID: PMC11007710 DOI: 10.1021/acsomega.3c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
A simple and efficient synthetic approach for generating a library of structurally novel indolizines has been developed via sequential 1,3-dipolar cycloaddition-ring opening processes. Using this methodology, a series of indolizines bearing different substituents were made in moderate to good yields. The presence of two functionalizable C-H bonds in these indolizine motifs makes them attractive for accessing fused indolizine scaffolds. In this line, we have introduced palladium-mediated site-selective C-H functionalizations, where the N-center and the two C-H centers of the indolizine moiety can be readily functionalized to generate fused N-heterocycles. Utilizing a Pd-mediated dual C-H activation of 5-benzoyl-substituted indolizine afforded 6H-indeno-indolizine, and a tetracene, viz., indolizino[2,1-b]indoles, was produced in the same substrate by the Pd-catalyzed selective C-H amination in the presence of oxygen.
Collapse
Affiliation(s)
- Sheba Ann Babu
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aparna A
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Malavika Mohan
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Namitha Paul
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Jomon Mathew
- Research
and Post-Graduate Department of Chemistry, St. Joseph’s College, Devagiri, Calicut 673008, India
| | - Jubi John
- Chemical
Sciences and Technology Division, CSIR-National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Zhuo JR, Zhao JQ, Yang L, Wu YL, Zhang YP, You Y, Wang ZH, Zhou MQ, Yuan WC. Thiol-Triggered Tandem Dearomative Michael Addition/Intramolecular Henry Reaction of 2-Nitrobenzofurans: Access to Sulfur-Containing Polyheterocyclic Compounds. Org Lett 2024; 26:2623-2628. [PMID: 38522081 DOI: 10.1021/acs.orglett.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
An efficient dearomative cyclization of 2-nitrobenzofurans via a thiol-triggered tandem Michael addition/intramolecular Henry reaction has been developed. A range of thiochromeno[3,2-b]benzofuran-11-ols and tetrahydrothieno[3,2-b]benzofuran-3-ols could be obtained in up to 99% yield and up to >20:1 dr. The valuable thiochromone fused benzofurans could be prepared with the reaction of 2-nitrobenzofurans and 2-mercaptobenzaldehyde via the tandem dearomative Michael addition/intramolecular Henry reaction/rearomatization/oxidative dehydrogenation process in a one-pot two-step operation. A mechanism for the reaction was tentatively proposed.
Collapse
Affiliation(s)
- Jun-Rui Zhuo
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- Zunyi Medical and Pharmaceutical College, Zunyi 563006, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yu-Lu Wu
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Babu SA, E J, John J. Annulation reactions of electrophilic benzannulated heterocycles towards heteroacenes. Chem Commun (Camb) 2024; 60:1674-1689. [PMID: 38258327 DOI: 10.1039/d3cc05449g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The current review describes different annulation strategies reported with electrophilic benzannulated heterocycles for accessing heteroacenes. For the past two decades, the chemistry of electrophilic benzannulated heterocycles was extensively investigated, and several dipolar cycloadditions, metal and organo-catalyzed transformations were introduced for the generation of fused heterocycles. In this review, we have collected all the reports where the annulation of electrophilic benzannulated heterocycles results in a fully aromatic system, viz. heteroacenes with tri-, tetra-, and pentacyclic rings. We reviewed every paper on the synthesis of fused heterocycles that was accessible and categorized the review into several parts based on the electrophilic benzannulated heterocycle used in the heteroacene synthesis such as electrophilic indole, electrophilic benzothiophene, and so forth. The generality and mechanistic postulates of each methodology are highlighted. In addition, we have also tried to feature the advantages or shortcomings of each method and have mentioned the possible applications of these methodologies for accessing heteroacenes for material applications.
Collapse
Affiliation(s)
- Sheba Ann Babu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Jijy E
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Department of Chemistry, MES College, Nedumkandam, Idukki, Kerala-685553, India.
| | - Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
10
|
Vedovato V, Gangano AJ, Ghiviriga I, Grenning AJ. Three-Component cine, ipso-Disubstitution of Nitrocoumarins. Org Lett 2024; 26:647-652. [PMID: 38215699 PMCID: PMC11392425 DOI: 10.1021/acs.orglett.3c03996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The development of a three-component cine,ipso-disubstitution of nitrocoumarins is reported. The reaction leverages the electrophilicity of nitrocoumarins, the nucleophilicity of nitronates, and the leaving group ability of nitrite (NO2-) to yield complex polyfunctionalized biaryls that often display stable axial chirality.
Collapse
Affiliation(s)
- Vincent Vedovato
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Anghelo J Gangano
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Alexander J Grenning
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
Ben Salah S, Othman M, Sanselme M, Daïch A, Chataigner I, Lawson AM. Dichotomic Dearomatizations of Benzene vs Pyridine Rings of Sulfonyloxypyridine via (3 + 2) Cycloaddition. J Org Chem 2023; 88:12265-12275. [PMID: 37560980 DOI: 10.1021/acs.joc.3c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Electron-poor arenesulfonyloxypyridines are selectively dearomatized whether on the pyridine or on the phenyl group through 1,3-dipolar cycloaddition (1,3-DC) involving non-stabilized azomethine ylides (AMY). Electronic effects of substituents on the aromatic rings allow to induce the regioselectivity of the transformation. Novel pyrrolidinic polycyclic heterocycles are thereby produced under mild acidic conditions at room temperature.
Collapse
Affiliation(s)
- Sami Ben Salah
- Normandie Univ; UNILEHAVRE, URCOM, EA 3221, 25 rue Philipe Lebon, F-76600 Le Havre Cedex, France
| | - Mohamed Othman
- Normandie Univ; UNILEHAVRE, URCOM, EA 3221, 25 rue Philipe Lebon, F-76600 Le Havre Cedex, France
| | - Morgane Sanselme
- UNIROUEN, Laboratoire SMS UR3233, Normandie Univ; Place Emile Blondel, France; F-76821 Mont Saint Aignan, France
| | - Adam Daïch
- Normandie Univ; UNILEHAVRE, URCOM, EA 3221, 25 rue Philipe Lebon, F-76600 Le Havre Cedex, France
| | - Isabelle Chataigner
- UNIROUEN, CNRS, INSA Rouen, COBRA laboratory, Normandie Univ; F-76000 Rouen, France
- CNRS, Sorbonne Université, LCT UMR 7616, F-75005 Paris, France
| | - Ata Martin Lawson
- Normandie Univ; UNILEHAVRE, URCOM, EA 3221, 25 rue Philipe Lebon, F-76600 Le Havre Cedex, France
| |
Collapse
|
12
|
Faye Y, Rkein B, Bigot A, Lequeux T, Legros J, Chataigner I. Photocatalyzed (3+2) Cycloaddition for the Dearomatization of Electron-Poor Arenes under Flow Conditions. Chemistry 2023; 29:e202301567. [PMID: 37306243 DOI: 10.1002/chem.202301567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
The photocatalyzed dearomative reaction between various electron-deficient aromatic compounds and a non-stabilized azomethine ylide is successfully performed in a flow system. Whereas the use of supported eosin as organic photocatalyst exhibits limited efficiency, turning to the soluble Rose Bengal allows to transform a broad range of substrates from hetarenes (indole, benzofuran, quinoline, pyridine) to naphthalenes and benzenes. This photocatalyzed (3+2) dearomative cycloaddition under green light irradiation provides a simple and efficient access to tridimensional pyrrolidino scaffolds with a tetrasubstituted carbon center at ring junction and can be performed in the friendly ethyl acetate. Computational studies support the mechanism involving azomethine ylide as reactive species toward the electron-poor arene.
Collapse
Affiliation(s)
- Youssou Faye
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, 76000, Rouen, France
| | - Batoul Rkein
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, 76000, Rouen, France
| | - Antoine Bigot
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, 76000, Rouen, France
| | - Thierry Lequeux
- Normandie Univ., ENSICAEN, Unicaen, CNRS, LCMT, 14000, Caen, France
| | - Julien Legros
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, 76000, Rouen, France
| | - Isabelle Chataigner
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, 76000, Rouen, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT UMR7616, 75005, Paris, France
| |
Collapse
|
13
|
Babu SA, P V V, Poulose S, Varughese S, John J. Copper-Catalyzed Annulation of Electrophilic Benzannulated Heterocycles with 2-Aminopyridine and 2-Aminoquinoline: Direct Access toward Polyring-Fused Imidazo[1,2- a]pyridines. J Org Chem 2023; 88:10027-10039. [PMID: 37433107 DOI: 10.1021/acs.joc.3c00849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
We have developed a direct method for the synthesis of polyring-fused imidazo[1,2-a]pyridines via a copper-catalyzed annulation of electrophilic benzannulated heterocycles with 2-aminopyridine and 2-aminoquinoline. From 3-nitroindoles and 2-aminopyridine, we could synthesize tetracenes, viz., indole-fused imidazo[1,2-a]pyridines, and by starting from 2-aminoquinoline, we could generate pentacenes, viz., indolo-imidazo[1,2-a]quinolines. In addition, we could also extend the methodology toward the synthesis of benzothieno-imidazo[1,2-a]pyridines starting from 3-nitrobenzothiophene. Furthermore, the basic photophysical properties of these synthesized heteroacenes were evaluated.
Collapse
Affiliation(s)
- Sheba Ann Babu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varsha P V
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Susanna Poulose
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Varughese
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Zhao JQ, Wang WJ, Zhou S, Xiao QL, Xue XS, Zhang YP, You Y, Wang ZH, Yuan WC. 3-Nitroindoles Serving as N-Centered Nucleophiles for Aza-1,6-Michael Addition to para-Quinone Methides. Molecules 2023; 28:5529. [PMID: 37513401 PMCID: PMC10384903 DOI: 10.3390/molecules28145529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
An unprecedented N-alkylation of 3-nitroindoles with para-quinone methides was developed for the first time. Using potassium carbonate as the base, a wide range of structurally diverse N-diarylmethylindole derivatives were obtained with moderated to good yields via the protection group migration/aza-1,6-Michael addition sequences. The reaction process was also demonstrated by control experiments. Different from the previous advances where 3-nitrodoles served as electrophiles trapping by various nucleophiles, the reaction herein is featured that 3-nitrodoles is defined with latent N-centered nucleophiles to react with ortho-hydrophenyl p-QMs for construction of various N-diarylmethylindoles.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Jie Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qi-Lin Xiao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xi-Sha Xue
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
15
|
Zhang WY, Wang HC, Wang Y, Zheng C, You SL. Enantioselective Dearomatization of Indoles via SmI 2-Mediated Intermolecular Reductive Coupling with Ketones. J Am Chem Soc 2023; 145:10314-10321. [PMID: 37126434 DOI: 10.1021/jacs.3c01994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Samarium diiodide (SmI2) mediated reductive coupling reactions are powerful methods for the construction of carbon-carbon bond in organic synthesis. Despite the extensive development in recent decades, successful examples of the corresponding asymmetric reactions remained scarce, probably due to the involvement of highly reactive radical intermediates. In this Article, we report an enantioselective dearomatization of indoles via SmI2-mediated intermolecular reductive coupling with ketones. The utilization of samarium reductant supported by chiral tridentate aminodiol ligands allows the facile synthesis of indoline molecules bearing two contiguous stereogenic centers in high yields (up to 99%) and stereoselectivity (up to 99:1 er and >20:1 dr). Combined experimental and computational investigations suggested that parallel single-electron transfer to each substrate from the chiral samarium reductant allows the radical-radical recombination in an enantioselective manner, which is a unique mechanistic scenario in SmI2-mediated reductive coupling reactions.
Collapse
Affiliation(s)
- Wen-Yun Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hu-Chong Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ye Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| |
Collapse
|
16
|
Chen Y, Zhao JQ, Zhang YP, Zhou MQ, Zhang XM, Yuan WC. Copper-Catalyzed Asymmetric Dearomative [3+2] Cycloaddition of Nitroheteroarenes with Azomethines. Molecules 2023; 28:molecules28062765. [PMID: 36985737 PMCID: PMC10057014 DOI: 10.3390/molecules28062765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Catalytic asymmetric dearomative [3+2] cycloaddition of α-imino γ-lactones with either 3-nitroindoles or 2-nitrobenzofurans by using a chiral copper complex as the catalyst was developed. A wide range of structurally diverse polyheterocyclic compounds containing spirocyclic-fused butyrolactone-pyrrolidine-indoline and butyrolactone-pyrrolidine-dihydrobenzofuran skeletons could be smoothly obtained with excellent results (>99:1 dr and 98% ee). The potential synthetic applications of this methodology were also demonstrated by the scale-up experiment and by the diverse transformations of one product. This method is characterized by high asymmetric induction, wide functional group tolerance and scalability, and attractive product diversification.
Collapse
Affiliation(s)
- Yan Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Department of Chemistry, Xihua University, Chengdu 610039, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
17
|
Zhou S, Qian HL, Zhao JQ, You Y, Wang ZH, Yin JQ, Zhang YP, Chen MF, Yuan WC. Diastereoselective synthesis of polycyclic indolines via dearomative [4 + 2] cycloaddition of 3-nitroindoles with ortho-aminophenyl p-quinone methides. Org Biomol Chem 2023; 21:1373-1378. [PMID: 36723148 DOI: 10.1039/d2ob02303b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A formal [4 + 2] cycloaddition of 3-nitroindoles with ortho-aminophenyl p-quinone methides via a dearomatization process was developed. This method provides a facile approach for preparing tetrahydro-5H-indolo[2,3-b]quinolones with good results. With the bifunctional Cinchona alkaloid-squaramide as the catalyst, the asymmetric version of the reaction successfully afforded the corresponding chiral products with moderate to good enantioselectivities. This work represents the first dearomative cycloaddition of electron-deficient heteroarenes triggered by aza-Michael addition from p-QMs.
Collapse
Affiliation(s)
- Shun Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Ling Qian
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Jun-Qing Yin
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Ming-Feng Chen
- Zhejiang Nexchem Pharmaceutical Co., Ltd., Jinhua, 321016, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
18
|
Dutta L, Chattopadhyay A, Yadav N, Ramasastry SSV. Phosphine-catalysed denitrative rearomatising (3 + 2) annulation of α,β-ynones and 3-nitroindoles. Org Biomol Chem 2023; 21:738-742. [PMID: 36601997 DOI: 10.1039/d2ob02180c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We describe a metal-free strategy to access various α-arylidene cyclopenta[b]indoles via phosphine-catalysed (3 + 2) annulation of α,β-ynones and 3-nitroindoles. For the first time, the rearomatisation of the indole nucleus was observed in such an annulative transformation. The method was extended to the synthesis of an antimalarial natural product, bruceolline E.
Collapse
Affiliation(s)
- Lona Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - Anwita Chattopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - Nisha Yadav
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Punjab 140306, India.
| |
Collapse
|
19
|
He XL, Wen YW, Li H, Qian S, He M, Song Q, Wang Z. Diastereoselective Synthesis of Dihydrobenzofuran-Fused Spiroindolizidines via Double-Dearomative [3 + 2] Cycloadditions. J Org Chem 2023; 88:493-503. [PMID: 36550408 DOI: 10.1021/acs.joc.2c02495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spiroindolizidine oxindoles represent a kind of privileged scaffold in many biologically active natural alkaloids. 2,3-Dihydrobenzofuran derivatives exhibit significant bioactivities in a variety of pharmaceuticals. Herein, we assembled these two privileged fragments into a small molecule via double-dearomative [3 + 2] cycloadditions with pyridinium ylides and 2-nitrobenzofurans. This protocol features remarkable advantages including wide substrate scope, mild condition, high level of diastereoselectivities and yields. Thus, a collection of spiroindolizidine-fused dihydrobenzofurans/indolines were facilely produced efficiently.
Collapse
Affiliation(s)
- Xiao-Long He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Yibin 644004, China
| | - You-Wu Wen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China
| | - Hechen Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China
| | - Shan Qian
- School of Food and Bioengineering, Xihua University, Chengdu 610039, P. R. China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Yibin 644004, China
| | - Mengyang He
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Qiao Song
- School of Science, Xihua University, Chengdu 610039, P. R. China
| | - Zhouyu Wang
- School of Science, Xihua University, Chengdu 610039, P. R. China.,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Department of Chemistry, Xihua University, Yibin 644004, China
| |
Collapse
|
20
|
Loco D, Chataigner I, Piquemal J, Spezia R. Efficient and Accurate Description of Diels-Alder Reactions Using Density Functional Theory. Chemphyschem 2022; 23:e202200349. [PMID: 35696652 PMCID: PMC9796631 DOI: 10.1002/cphc.202200349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Indexed: 01/01/2023]
Abstract
Modeling chemical reactions using Quantum Chemistry is a widely used predictive strategy capable to complement experiments in order to understand the intrinsic mechanisms guiding the chemicals towards the most favorable reaction products. However, at this purpose, it is mandatory to use reliable and computationally tractable theoretical methods. In this work, we focus on six Diels-Alder reactions of increasing complexity and perform an extensive benchmark of middle- to low-cost computational approaches to predict the characteristic reactions energy barriers. We found that Density Functional Theory, using the ωB97XD, LC-ωPBE, CAM-B3LYP, M11 and MN12SX functionals, with empirical dispersion corrections coupled to an affordable 6-31G basis set, provides quality results for this class of reactions, at a small computational effort. Such efficient and reliable simulation protocol opens perspectives for hybrid QM/MM molecular dynamics simulations of Diels-Alder reactions including explicit solvation.
Collapse
Affiliation(s)
- Daniele Loco
- Sorbonne Université, Laboratoire de Chimie ThéoriqueUMR 7616 CNRS4 Place Jussieu75005ParisFrance
- Qubit PharmaceuticalsIncubateur Paris Biotech Santé24 rue du Faubourg Saint Jacques75014ParisFrance
| | - Isabelle Chataigner
- Sorbonne Université, Laboratoire de Chimie ThéoriqueUMR 7616 CNRS4 Place Jussieu75005ParisFrance
- Normandie Univ.UNIROUENCNRS, INSA Rouen, COBRA76000RouenFrance
| | - Jean‐Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie ThéoriqueUMR 7616 CNRS4 Place Jussieu75005ParisFrance
| | - Riccardo Spezia
- Sorbonne Université, Laboratoire de Chimie ThéoriqueUMR 7616 CNRS4 Place Jussieu75005ParisFrance
| |
Collapse
|
21
|
Sabat N, Zhou W, Gandon V, Guinchard X, Vincent G. Unbiased C3-Electrophilic Indoles: Triflic Acid Mediated C3-Regioselective Hydroarylation of N-H Indoles. Angew Chem Int Ed Engl 2022; 61:e202204400. [PMID: 35570713 PMCID: PMC9401073 DOI: 10.1002/anie.202204400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 11/24/2022]
Abstract
The direct dearomative addition of arenes to the C3 position of unprotected indoles is reported under operationally simple conditions, using triflic acid at room temperature. The present regioselective hydroarylation is a straightforward manner to generate an electrophilic indole at the C3 position from unbiased indoles in sharp contrast to previous strategies. This atom-economical method delivers biologically relevant 3-arylindolines and 3,3-spiroindolines in high yields and regioselectivities from both intra- and intermolecular processes. DFT computations suggest the stabilization of cationic or dicationic intermediates with H-bonded (TfOH)n clusters.
Collapse
Affiliation(s)
- Nazarii Sabat
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182Université Paris-Saclay, CNRS91405OrsayFrance
- Institut de Chimie des Substances Naturelles (ICSN), UPR 2301Université Paris-Saclay, CNRS91198Gif-sur-YvetteFrance
| | - Weiping Zhou
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182Université Paris-Saclay, CNRS91405OrsayFrance
- Institut de Chimie des Substances Naturelles (ICSN), UPR 2301Université Paris-Saclay, CNRS91198Gif-sur-YvetteFrance
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182Université Paris-Saclay, CNRS91405OrsayFrance
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168Ecole PolytechniqueInstitut Polytechnique de Paris, CNRS91128PalaiseauFrance
| | - Xavier Guinchard
- Institut de Chimie des Substances Naturelles (ICSN), UPR 2301Université Paris-Saclay, CNRS91198Gif-sur-YvetteFrance
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182Université Paris-Saclay, CNRS91405OrsayFrance
| |
Collapse
|
22
|
Krishnan R A, Babu SA, Ravi NP, Thulasi S, John J. Base-Mediated Annulation of Electrophilic Benzothiophene with Naphthols and Phenols: Accessing Benzothiophene-Fused Heteroacenes. J Org Chem 2022; 87:8017-8027. [PMID: 35666573 DOI: 10.1021/acs.joc.2c00645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A base-mediated annulation of 2-nitrobenzothiophenes with naphthols was realized for the synthesis of hitherto unknown class of heteroacenes, namely benzothieno[2,3-b]naphthofurans. By using naphthols with a hydroxyl group positioned at 1st or 2nd position, we could synthesize two positional isomers, benzothieno[2,3-b]naphtho[2,1-d]furans or benzothieno[2,3-b]naphtho[2,3-d]furans. The annulation was found to be general with a range of substituted 2-nitrobenzothiophenes and naphthols. This heteroannulation of benzothiophene was extended using a range of phenols affording the corresponding benzothieno[2,3-b]benzofurans in moderate yields. The basic photophysical properties of these heteroacenes were evaluated, and we also demonstrated the applicability of this annulation on the gram scale.
Collapse
Affiliation(s)
- Akhil Krishnan R
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Sheba Ann Babu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nitha P Ravi
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreeja Thulasi
- Department of Chemistry, T. K. Madhava Memorial College, Nangiarkulangara, Haripad 690513, India
| | - Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Sabat N, Zhou W, Gandon V, Guinchard X, Vincent G. Unbiased C3‐Electrophilic Indoles: Triflic Acid Mediated C3‐Regioselective Hydroarylation of N−H Indoles**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nazarii Sabat
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 Université Paris-Saclay, CNRS 91405 Orsay France
- Institut de Chimie des Substances Naturelles (ICSN), UPR 2301 Université Paris-Saclay, CNRS 91198 Gif-sur-Yvette France
| | - Weiping Zhou
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 Université Paris-Saclay, CNRS 91405 Orsay France
- Institut de Chimie des Substances Naturelles (ICSN), UPR 2301 Université Paris-Saclay, CNRS 91198 Gif-sur-Yvette France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 Université Paris-Saclay, CNRS 91405 Orsay France
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris, CNRS 91128 Palaiseau France
| | - Xavier Guinchard
- Institut de Chimie des Substances Naturelles (ICSN), UPR 2301 Université Paris-Saclay, CNRS 91198 Gif-sur-Yvette France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 Université Paris-Saclay, CNRS 91405 Orsay France
| |
Collapse
|
24
|
Zhou XJ, Zhao JQ, Lai YQ, You Y, Wang ZH, Yuan WC. Organocatalyzed asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. Chirality 2022; 34:1019-1034. [PMID: 35521642 DOI: 10.1002/chir.23455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Abstract
A readily available chiral cyclohexanediamine-derived bifunctional tertiary amine-squaramide catalyst is more effective for the asymmetric dearomative 1,3-dipolar cycloaddition of 2-nitrobenzofurans and N-2,2,2-trifluoroethylisatin ketimines. A range of structurally diverse spiro-fused polyheterocyclic compounds containing oxindole, pyrrolidine, and hydrobenzofuran motifs were smoothly obtained in excellent results (up to 99% yield, >20:1 dr in all cases and up to 99% ee). This method features high efficiency, mild reaction conditions, exquisite asymmetric induction, wide functional group tolerance, great potential for scale-up synthesis, and attractive product diversification.
Collapse
Affiliation(s)
- Xiao-Jian Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China.,Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Yue-Qin Lai
- Zhejiang Jinhua Conba Bio-Pharm. Co. Ltd., Jinhua, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, China
| |
Collapse
|
25
|
Dyguda M, Skrzyńska A, Sieroń L, Albrecht Ł. Dearomative Michael addition involving enals and 2-nitrobenzofurans realized under NHC-catalysis. Chem Commun (Camb) 2022; 58:5367-5370. [PMID: 35352710 DOI: 10.1039/d2cc00294a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this manuscript, the first enantioselective dearomative Michael addition between α,β-unsaturated aldehydes and 2-nitrobenzofurans realized under N-heterocyclic carbene activation has been described. The reaction proceeds via addition of homoenolate to Michael acceptors leading to the formation of biologically important heterocycles with high yields and stereoselectivities. Their functionalization potential has been confirmed in selected, diastereoselective transformations.
Collapse
Affiliation(s)
- Mateusz Dyguda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Anna Skrzyńska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Lesław Sieroń
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź, 90-924, Poland.
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
26
|
Dou PH, Yuan SP, Chen Y, Zhao JQ, Wang ZH, You Y, Zhang YP, Zhou MQ, Yuan WC. Dearomatization of 3-Nitroindoles Enabled Using Palladium-Catalyzed Decarboxylative [4 + 2] Cycloaddition of 2-Alkylidenetrimethylene Carbonates. J Org Chem 2022; 87:6025-6037. [PMID: 35436114 DOI: 10.1021/acs.joc.2c00276] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A dearomatization process of 3-nitroindoles enabled using palladium-catalyzed decarboxylative [4 + 2] cycloaddition of either 2-alkylidenetrimethylene carbonates or 2-(hydroxymethyl)-3-arylallyl carbonates has been developed, affording a wide range of indoline-fused tetrahydropyrans in good yields with excellent diastereoselectivities. This reaction features a wide substrate scope and mild conditions and represents the first example of the application of π-allyl palladium 1,4-[O,C]-dipole species for the dearomative cycloaddition of electron-deficient heteroarenes.
Collapse
Affiliation(s)
- Pei-Hao Dou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Pei Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
27
|
Affiliation(s)
- Ning Wang
- Sichuan University West China Hospital Department of laboratory medicine CHINA
| | - Jing Ren
- Sichuan University West China Hospital Department of Radiology CHINA
| | - Kaizhi Li
- Sichuan University West China Hospital Department of laboratory medicine Biophamaceutical Research Institute, West China Hospital, Sichuan University, Ch 610041 Chengdu CHINA
| |
Collapse
|
28
|
Tanaka H, Ukegawa N, Uyanik M, Ishihara K. Hypoiodite-Catalyzed Oxidative Umpolung of Indoles for Enantioselective Dearomatization. J Am Chem Soc 2022; 144:5756-5761. [PMID: 35319875 PMCID: PMC8991020 DOI: 10.1021/jacs.2c01852] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Here we report the
oxidative umpolung of 2,3-disubstituted indoles
toward enantioselective dearomative aza-spirocyclization to give the
corresponding spiroindolenines using chiral quaternary ammonium hypoiodite
catalysis. Mechanistic studies revealed the umpolung reactivity of
C3 of indoles by iodination of the indole nitrogen atom. Moreover,
the introduction of pyrazole as an electron-withdrawing auxiliary
group at C2 suppressed a competitive dissociative racemic pathway,
and enantioselective spirocyclization proceeded to give not only spiropyrrolidines
but also four-membered spiroazetidines that are otherwise difficult
to access.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Naoya Ukegawa
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
29
|
Yuan WC, Chen XM, Zhao JQ, Zhang YP, Wang ZH, You Y. Ag-Catalyzed Asymmetric Interrupted Barton-Zard Reaction Enabling the Enantioselective Dearomatization of 2- and 3-Nitroindoles. Org Lett 2022; 24:826-831. [PMID: 35029401 DOI: 10.1021/acs.orglett.1c04036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We disclose a Ag-catalyzed asymmetric interrupted Barton-Zard reaction of α-aryl-substituted isocyanoacetates with 2- and 3-nitroindoles, which enables the dearomatization of nitroindoles and hence offers rapid access to an array of optically active tetrahydropyrrolo[3,4-b]indole derivatives bearing three contiguous stereogenic centers, including two tetrasubstituted chiral carbon atoms with pretty outcomes (up to 99% yield, 91:9 dr, and 96% ee). The synthetic potential of the protocol was showcased by the gram-scale reaction and versatile transformations of the product.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xin-Meng Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
30
|
Zhao JQ, Zhou S, Qian HL, Wang ZH, Zhang YP, You Y, Yuan WC. Higher-order [10 + 2] cycloaddition of 2-alkylidene-1-indanones enables the dearomatization of 3-nitroindoles: access to polycyclic cyclopenta[ b]indoline derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo00289b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The higher-order [10 + 2] cycloaddition of 3-nitroindoles and 2-alkylidene-1-indanones enables the dearomatization of 3-nitroindoles and affords a range of structurally diverse cyclopenta[b]indolines with excellent results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hui-Ling Qian
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
31
|
Rulev AY, Zubkov FI. Hyperbaric reactions in organic synthesis. Progress from 2006 to 2020. Org Biomol Chem 2022; 20:2320-2355. [DOI: 10.1039/d1ob01423d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This comprehensive review summarizes the published literature data concerning above 1 kbar reactions for the purposes of preparative organic synthesis (more then 50 mg of the initial substance) from 2006...
Collapse
|
32
|
Osipov DV, Korzhenko KS, Rashchepkina DA, Artemenko AA, Demidov OP, Shiryaev VA, Osyanin VA. Catalyst-free formal [3 + 2] cycloaddition of stabilized N, N-cyclic azomethine imines to 3-nitrobenzofurans and 3-nitro-4 H-chromenes: access to heteroannulated pyrazolo[1,2- a]pyrazoles. Org Biomol Chem 2021; 19:10156-10168. [PMID: 34778893 DOI: 10.1039/d1ob01377g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have studied the [3 + 2]-cycloaddition of various N,N-cyclic azomethine imines to 3-nitrobenzofurans. This process is a rare example of their dearomatization. We have also extended this process to the related 3-nitro-4H-chromenes as dipolarophiles. Both reactions provide access to benzofuro- and chromeno-condensed pyrazolo[1,2-a]pyrazoles with 100% atom economy in a diastereoselective manner under mild eco-friendly conditions. Finally, on the basis of DFT calculations, the mechanistic insights into the mentioned [3 + 2]-cycloadditions and explanations of the experimentally determined limitations of the method are given. Hirshfeld atomic charge values of push-pull heterocycles were suggested as a criterion for a priori assessment of the possibility of their dipolar cycloaddition with N,N-cyclic azomethine imines.
Collapse
Affiliation(s)
- Dmitry V Osipov
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russia.
| | - Kirill S Korzhenko
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russia.
| | - Daria A Rashchepkina
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russia.
| | - Alina A Artemenko
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russia.
| | - Oleg P Demidov
- Department of Chemistry, North Caucasus Federal University, 1 Pushkin St., Stavropol 355009, Russia
| | - Vadim A Shiryaev
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russia.
| | - Vitaly A Osyanin
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University, 244 Molodogvardeyskaya St., Samara 443100, Russia.
| |
Collapse
|
33
|
Lv M, Li X. Ni(II)-Catalyzed Asymmetric Nitration of Oxindoles: Construction of Cipargamin Analogues. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingjun Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
34
|
Zhao JQ, Zhou S, Yang L, Du HY, You Y, Wang ZH, Zhou MQ, Yuan WC. Catalytic Asymmetric Dearomative 1,3-Dipolar Cycloaddition of 2-Nitrobenzothiophenes and Isatin-Derived Azomethine Ylides. Org Lett 2021; 23:8600-8605. [PMID: 34672632 DOI: 10.1021/acs.orglett.1c03318] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An enantioselective dearomative 1,3-dipolar cycloaddition of 2-nitrobenzothiophenes and isatin-derived azomethine ylides with a bifunctional hydrogen-bonding thiourea catalyst was established, giving polyheterocyclic compounds in excellent results (up to 99% yield, >20:1 dr for all cases and up to 99% ee). The enantioselectivity could be reversed by the bifunctional hydrogen-bonding squaramide catalyst containing the same chiral source as in the thiourea catalyst. DFT calculations revealed the origin of the observed stereochemistry and the reversal of enantioselectivity.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lei Yang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hong-Yan Du
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
35
|
Zhou P, Yi Y, Hua YZ, Jia SK, Wang MC. Dinuclear Zinc Catalyzed Enantioselective Dearomatization [3+2] Annulation of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes. Chemistry 2021; 28:e202103688. [PMID: 34713514 DOI: 10.1002/chem.202103688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 12/18/2022]
Abstract
The application of dinuclear zinc catalysts in a dearomatization reaction has been developed. Catalytic asymmetric dearomatization [3+2] annulations of 2-nitrobenzofurans or 2-nitrobenzothiophenes with CF3 -containing N-unprotected isatin-derived azomethine ylides catalyzed by dinuclear zinc catalysts are realized with excellent diastereomer ratios (dr) of >20 : 1 and enantiomeric excess (ee) of up to 99 %. This protocol provides a practical, straightforward access to structurally diverse pyrrolidinyl spirooxindoles containing a 2,3-fused-dihydrobenzofuran (or dihydrobenzothiphene) moiety, and four contiguous stereocenters. Reactions can be performed on a gram scale. The absolute configuration of products is confirmed by X-ray single crystal structure analysis, and a possible mechanism is proposed.
Collapse
Affiliation(s)
- Peng Zhou
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Yang Yi
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Yuan-Zhao Hua
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Shi-Kun Jia
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Min-Can Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| |
Collapse
|
36
|
Sengupta S, Das P. C-H activation reactions of nitroarenes: current status and outlook. Org Biomol Chem 2021; 19:8409-8424. [PMID: 34554174 DOI: 10.1039/d1ob01455b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ring substitution reactions of nitroarenes remain an under-developed area of organic synthesis, confined to the narrow domains of SNAr and SNArH reactions. While searching for alternative methodologies, we took stock of the C-H activation reactions of nitroarenes which unearthed a variety of examples of nitro directed regioselective C-H functionalization reactions such as ortho-arylation, -benzylation/alkylation, and -allylation, oxidative Heck and C-H arylation reactions on (hetero)aromatic rings. A collective account of these reactions is presented in this review to showcase the existing landscape of C-H activation reactions of nitroarenes, to create interest in this field for further development and propagate this strategy as a superior alternative for ring substitution reactions of nitroarenes. The prospect of merging the C-H activation of nitroarenes with C-NO2 activation, thereby harnessing NO2 as a transformable multitasking directing group, is also illustrated.
Collapse
Affiliation(s)
- Saumitra Sengupta
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad-826004, India.
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad-826004, India.
| |
Collapse
|
37
|
Xie JH, Zheng C, You SL. Palladium-Catalyzed Dearomative Methoxyallylation of 3-Nitroindoles with Allyl Carbonates. Angew Chem Int Ed Engl 2021; 60:22184-22188. [PMID: 34273125 DOI: 10.1002/anie.202107139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 01/18/2023]
Abstract
Herein we report a Pd-catalyzed dearomative methoxyallylation of 3-nitroindoles with readily available allyl carbonates. Good yields (up to 86 %) and diastereoselectivity (up to >20:1 dr) are obtained for a wide range of substrates. The compatibility of gram-scale synthesis and the relatively low catalyst loading (down to 1 mol % of [Pd]) enhance the practicality of this method. The kinetic experiments indicate that the rate-determining step of this reaction is the nucleophilic attack of the alkoxide anion.
Collapse
Affiliation(s)
- Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
38
|
Palladium‐Catalyzed Dearomative Methoxyallylation of 3‐Nitroindoles with Allyl Carbonates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Rkein B, Manneveau M, Noël-Duchesneau L, Pasturaud K, Durandetti M, Legros J, Lakhdar S, Chataigner I. How electrophilic are 3-nitroindoles? Mechanistic investigations and application to a reagentless (4+2) cycloaddition. Chem Commun (Camb) 2021; 57:10071-10074. [PMID: 34515263 DOI: 10.1039/d1cc04074j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The electrophilicity of 4 different 3-nitroindole derivatives has been evaluated by Mayr's linear free energy relationship (log k(20 °C) = sN(E + N)) and reveals unexpected values for aromatic compounds, in the nitrostyrene range. 3-Nitroindoles are sufficiently electrophilic to interact with a common diene namely the Danishefsky's diene at room temperature, in the absence of any activator, to furnish smoothly the dearomatized (4+2) cycloadducts in good yields.
Collapse
Affiliation(s)
- Batoul Rkein
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France.
| | - Maxime Manneveau
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France.
| | | | - Karine Pasturaud
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France.
| | - Muriel Durandetti
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France.
| | - Julien Legros
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France.
| | - Sami Lakhdar
- Normandie Univ., ENSICAEN, Unicaen, CNRS, LCMT, 14000 Caen, France.,Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France.
| | - Isabelle Chataigner
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France. .,Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT UMR7616, 75005 Paris, France
| |
Collapse
|
40
|
Flow dearomatization of electron-poor 3-fluoromethylthioindoles by 1,3-dipolar cycloaddition. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Lindsay AC, Kilmartin PA, Sperry J. Synthesis of 3-nitroindoles by sequential paired electrolysis. Org Biomol Chem 2021; 19:7903-7913. [PMID: 34549223 DOI: 10.1039/d1ob01453f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3-Nitroindoles are synthetically versatile intermediates but current methods for the preparation hinder their widespread application. Herein, we report that nitroenamines undergo electrochemical cyclisation to 3-nitroindoles in the presence of potassium iodide. Detailed control experiments and cyclic voltammogram studies infer the reaction proceeds via a sequential paired electrolysis process, beginning with anodic oxidation of iodide (I-) to the iodine radical (I˙), which facilitates cyclisation of the nitroenamine to give a 3-nitroindolinyl radical. Cathodic reduction and protonation generates a 3-nitroindoline that upon oxidation forms the 3-nitroindole.
Collapse
Affiliation(s)
- Ashley C Lindsay
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Paul A Kilmartin
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
42
|
Wan Q, Xie JH, Zheng C, Yuan YF, You SL. Silver-Catalyzed Asymmetric Dearomatization of Electron-Deficient Heteroarenes via Interrupted Barton-Zard Reaction. Angew Chem Int Ed Engl 2021; 60:19730-19734. [PMID: 34196074 DOI: 10.1002/anie.202107767] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Herein we report a catalytic asymmetric dearomatization reaction of electron-deficient heteroarenes with α-substituted isocyanoacetates through an interrupted Barton-Zard reaction. A range of optically active pyrrolo[3,4-b]indole derivatives was obtained in good yields (up to 97 %) with high stereoselectivities (up to >20:1 dr and 97 % ee), using a catalytic system consisting of a cinchona-derived amino-phosphine and silver oxide. This reaction features wide substrate scope and mild conditions, and provides a new strategy for developing asymmetric dearomatization reactions.
Collapse
Affiliation(s)
- Qian Wan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yao-Feng Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
43
|
Wan Q, Xie J, Zheng C, Yuan Y, You S. Silver‐Catalyzed Asymmetric Dearomatization of Electron‐Deficient Heteroarenes via Interrupted Barton–Zard Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qian Wan
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jia‐Hao Xie
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yao‐Feng Yuan
- College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
44
|
Dou P, Chen Y, You Y, Wang Z, Zhao J, Zhou M, Yuan W. Organocatalyzed Asymmetric Dearomative [3+2] Annulation of Electron‐Deficient 2‐Nitrobenzo Heteroarenes with 3‐Isothiocyanato Oxindoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pei‐Hao Dou
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yan Chen
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yong You
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Zhen‐Hua Wang
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Jian‐Qiang Zhao
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Ming‐Qiang Zhou
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
| | - Wei‐Cheng Yuan
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| |
Collapse
|
45
|
Cao D, Chen G, Chen D, Xia Z, Li Z, Wang Y, Xu D, Yang J. Synthesis of 4-Hydroxycarbazole Derivatives by Benzannulation of 3-Nitroindoles with Alkylidene Azlactones. ACS OMEGA 2021; 6:16969-16979. [PMID: 34250355 PMCID: PMC8264937 DOI: 10.1021/acsomega.1c01992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/14/2021] [Indexed: 05/05/2023]
Abstract
A general synthesis of 4-hydroxylcarbazoles by domino vinylogous conjugate addition/cyclization/elimination/aromatization of easily prepared 3-nitroindoles with alkylidene azlactones under mild and transition-metal-free conditions has been developed. This method was also applicable to other nitrosubstituted benzofused heterocycles such as 3-nitrobenzothiophene, 2-nitrobenzothiophene, and 2-nitrobenzofuran. The valuable tetracyclic carbazole derivatives, such as 6H-oxazolo[4,5-c]carbazole and 3,6-dihydro-2H-oxazolo[4,5-c]carbazol-2-one, were readily prepared from the product, demonstrating synthetic utility of this method.
Collapse
|
46
|
Drew MA, Tague AJ, Richardson C, Pyne SG, Hyland CJT. Palladium-Catalyzed Formal (3 + 2) Cycloaddition Reactions of 2-Nitro-1,3-enynes with Vinylaziridines, -epoxides, and -cyclopropanes. Org Lett 2021; 23:4635-4639. [PMID: 34080422 DOI: 10.1021/acs.orglett.1c01364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A two-step Pd-catalyzed (3 + 2) cycloaddition/HNO2 elimination reaction sequence has been developed to give novel cyclic 1,3-dien-5-yne systems from Pd-stabilized zwitterionic 1,3-dipoles and 2-nitro-1,3-enyne substrates. The process is highly atom-efficient and tolerates the reaction of 2-vinyloxirane, 1-tosyl-2-vinylaziridine, and diethyl 2-vinylcyclopropane-1,1-dicarboxylate derived 1,3-dipoles with a variety of 2-nitro-1,3-enyne substrates. The stereochemistry of the intermediate (3 + 2) cycloadducts was determined by single crystal X-ray analysis. Furthermore, a selective kinetic elimination of the cycloadduct with an antiperiplanar relationship between the NO2 group and the participating hydrogen was demonstrated, allowing for efficient isolation of a single diastereoisomer of the cycloadduct.
Collapse
Affiliation(s)
- Melanie A Drew
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| | - Andrew J Tague
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| |
Collapse
|
47
|
Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Construction of bridged polycycles through dearomatization strategies. Org Biomol Chem 2021; 19:3960-3982. [PMID: 33978039 DOI: 10.1039/d1ob00096a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bridged polycycles are privileged molecular skeletons with wide occurrence in bioactive natural products and pharmaceuticals. Therefore, they have been the pursing target molecules of numerous chemists. The rapid and convenient generation of sp3-rich complex three-dimensional molecular skeletons from simple and easily available aromatics has made dearomatization a highly valuable synthetic tool for the construction of rigid and challenging bridged rings. This review summarizes the-state-of-the-art advances of dearomatization strategies in the application of bridged ring formation, discusses their advantages and limitations and the in-depth mechanism, and highlights their synthetic value in the total synthesis of natural products. We wish this review will provide an important reference for medicinal and synthetic chemists and will inspire further development in this intriguing research area.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
48
|
Krishnan R A, Babu SA, P R N, Krishnan J, John J. Synthesis of Benzothienobenzofurans via Annulation of Electrophilic Benzothiophenes with Phenols. Org Lett 2021; 23:1814-1819. [PMID: 33591196 DOI: 10.1021/acs.orglett.1c00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have developed a metal-free, mild, and green synthetic route toward benzothieno[3,2-b]benzofurans by the annulation of 3-nitrobenzothiophene with phenols. The reaction was found to be general with a range of substituted phenols. In addition, we could extend the methodology for the synthesis of pentacenes and could demonstrate the synthesis in gram-scale. Moreover, we extended the strategy for the synthesis of benzothieno[2,3-b]benzofurans by starting from 2-nitrobenzothiophenes.
Collapse
Affiliation(s)
- Akhil Krishnan R
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Sheba Ann Babu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nitha P R
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadeesh Krishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
49
|
Zhao JQ, Zhou S, Wang ZH, You Y, Chen S, Liu XL, Zhou MQ, Yuan WC. Catalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5 H-thiazol-4-ones: stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Org Chem Front 2021. [DOI: 10.1039/d1qo01061a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones is developed for the construction of dihydrobenzofuran-bridged polycyclic skeletons with good results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shuang Chen
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiong-Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|