1
|
Chen Q, Tang W, Kuai M, Gao G, Hou Y, Huang Q, Fang W, Chen Y, Liu L, Wu Y. Long-Life Quasi-Solid-State Lithium-Oxygen Battery Enabled by the Gel Polymer Electrolyte and Redox Moieties Anchored in the Cathode. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16245-16255. [PMID: 40000062 DOI: 10.1021/acsami.4c22709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The practical development of Li-O2 batteries is often hindered by poor cycling stability, which arises from volatile liquid electrolytes, an unstable anode/electrolyte interface, and sluggish reaction kinetics related to Li2O2. In this study, we design a long-life quasi-solid-state Li-O2 battery by integrating a gel polymer electrolyte (GPE) with a tetramethylpiperidinyloxy (TEMPO) redox mediator anchored in a poly(2,2,6,6-tetramethylpiperidinyloxy-4-methacrylate) (PTMA) cathode. During cycling, the GPE stabilizes the lithium/electrolyte interface and retains the electrolyte, while the TEMPO moieties anchored in the PTMA cathode effectively enhance the catalytic selectivity for Li2O2 formation and decomposition. This innovative design significantly improves electrochemical performance, achieving an impressive lifespan of 800 h. The advancements in rechargeability and efficiency presented in this work are expected to pave the way for the development of long-lived solid-state Li-O2 batteries.
Collapse
Affiliation(s)
- Qizhe Chen
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Wenbin Tang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Meiying Kuai
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Guowei Gao
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yuyang Hou
- CSIRO Mineral Resources, Clayton, VIC 3168, Australia
| | - Qinghong Huang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yuhui Chen
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
2
|
Zhao J, Deng C, Zhang L, Zhang J, Rong Q, Wang F, Liu ZQ. NHPI-Catalyzed Electro-Oxidation of Alcohols to Aldehydes and Ketones. J Org Chem 2024; 89:15864-15876. [PMID: 39437145 DOI: 10.1021/acs.joc.4c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A practical and recyclable electro-oxidation of alcohols to aldehydes and ketones by using N-hydroxyphthalimide (NHPI) as the catalyst is presented. Through an undivided pool, under constant current conditions, various alcohols can be oxidized to the corresponding aldehydes or ketones in a high yield. Compared with previous methods, this system has the following characteristics: (1) the catalyst, electrode, electrolyte, and solvent (mainly water) are recyclable; (2) it has many advantages such as mild reaction conditions, easy operation, and good tolerance of functional groups; and (3) it can be smoothly scaled up to kilogram-scale production.
Collapse
Affiliation(s)
- Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chengling Deng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lanlan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiatai Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Quanjin Rong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Yin B, Wang C, Xie S, Gu J, Sheng H, Wang DX, Yao J, Zhang C. Regulating Spin Density using TEMPOL Molecules for Enhanced CO 2-to-Ethylene Conversion by HKUST-1 Framework Derived Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202405873. [PMID: 38709722 DOI: 10.1002/anie.202405873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/08/2024]
Abstract
The selectivity of multicarbon products in the CO2 reduction reaction (CO2RR) depends on the spin alignment of neighboring active sites, which requires a spin catalyst that facilitates electron transfer with antiparallel spins for enhanced C-C coupling. Here, we design a radical-contained spin catalyst (TEMPOL@HKUST-1) to enhance CO2-to-ethylene conversion, in which spin-disordered (SDO) and spin-ordered (SO) phases co-exist to construct an asymmetric spin configuration of neighboring active sites. The replacement of axially coordinated H2O molecules with TEMPOL radicals introduces spin-spin interactions among the Cu(II) centers to form localized SO phases within the original H2O-mediated SDO phases. Therefore, TEMPOL@HKUST-1 derived catalyst exhibited an approximately two-fold enhancement in ethylene selectivity during the CO2RR at -1.8 V versus Ag/AgCl compared to pristine HKUST-1. In situ ATR-SEIRAS spectra indicate that the spin configuration at asymmetric SO/SDO sites significantly reduces the kinetic barrier for *CO intermediate dimerization toward the ethylene product. The performance of the spin catalyst is further improved by spin alignment under a magnetic field, resulting in a maximum ethylene selectivity of more than 50 %. The exploration of the spin-polarized kinetics of the CO2RR provides a promising path for the development of novel spin electrocatalysts with superior performance.
Collapse
Affiliation(s)
- Baipeng Yin
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Can Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST) Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Shijie Xie
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianmin Gu
- State Key Laboratory of Metastable Materials Science and Technology (MMST) Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Hua Sheng
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, 350108, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
She Y, Chen X, Wang M, Liu A, Wang X, Gao D, Hu K, Hu M. Heterogeneous solvent-metal-free aerobic oxidation of alcohol under ambient conditions catalyzed by TEMPO-functionalized porous poly(ionic liquid)s. RSC Adv 2024; 14:20199-20209. [PMID: 38919279 PMCID: PMC11196979 DOI: 10.1039/d4ra02241f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/11/2024] [Indexed: 06/27/2024] Open
Abstract
Heterogeneous solvent-metal-free aerobic oxidation of alcohols under ambient conditions is interesting but remains a significant challenge. Herein, a series of porous TEMPO-functionalized poly(ionic liquid)s (TEMPO-PILs) featuring a pure polycationic framework were successfully developed through the free radical polymerization of the ionic liquid 3-(2-chloroacetic acid-2,2,6,6-tetramethyl-1-oxo-4-piperidyl)-1-vinylimidazolium chloride and bis-vinylimidazolium bromide salt. Characterizations revealed that the obtained TEMPO-PILs possessed a high TEMPO density, abundant bromide ions, and a tunable porous structure, which enabled them to serve as solvent-free heterogeneous organocatalysts for the metal-free aerobic oxidation of benzyl alcohol under ambient conditions, exhibiting high catalytic activity and stable recyclability. A high yield of 99% coupled with a turnover frequency (TOF) of 13.3 h-1 was obtainable, which is higher than most of the reported TEMPO-based heterogeneous catalysts, even superior to homogeneous TEMPO-functionalized ionic liquids. Furthermore, a broad range of alcohols were effectively converted into their corresponding ketones and aldehydes. A possible reaction mechanism is proposed for understanding the catalytic oxidation behavior, indicative of the synergistic effect of TEMPO moieties and bromide ions.
Collapse
Affiliation(s)
- Yaping She
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Xinyu Chen
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Mengya Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Anqiu Liu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Xiaochen Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Daming Gao
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Kunhong Hu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Miao Hu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| |
Collapse
|
5
|
Enhanced Catalytic Activity of TEMPO-Mediated Aerobic Oxidation of Alcohols via Redox-Active Metal-Organic Framework Nodes. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020593. [PMID: 36677651 PMCID: PMC9865133 DOI: 10.3390/molecules28020593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Metal-organic frameworks (MOFs) are outstanding platforms for heterogeneous catalysis due to their tunable pore size, huge surface area, large porosity, and potential active sites. The design and synthesis of MOF/organocatalyst co-catalytic systems have attracted considerable interest owing to their high catalytic activity, low toxicity, and mild reaction conditions. Herein, we reported the synthesis of a bifunctional TEMPO-IsoNTA organocatalyst featuring a pyridyl group as an anchoring site and a TEMPO radical as a catalytic active site. By using the topologically isomorphic structures of MIL-101(Fe) and MIL-101(Cr) as co-catalysts, these MOF/TEMPO-IsoNTA systems enable the efficient aerobic oxidation of various alcohols to their corresponding aldehydes or ketones under mild conditions. Notably, the MIL-101(Fe)/TEMPO-IsoNTA system exhibits superior catalytic activity, thanks to their redox-active FeIII-oxo nodes, which facilitate the regeneration of TEMPO-IsoNTA. Our research not only solves the problem of potential heavy metal contamination in the TEMPO-based homogeneous catalytic system, but also enriches the understanding of synergism of MOFs/organocatalysts.
Collapse
|
6
|
Zhao J, Luo Z, Liu Y, Xu J, Huang Z, Xiong W. Photochemical oxidation of alcohols to ketones or aldehydes using DMSO as an oxidant without activated agent. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
de Lima Oliveira R, Nicinski K, Pisarek M, Kaminska A, Thomas A, Pasternak G, Colmenares JC. Porous heteroatom‐doped carbons: efficient catalysts for selective oxidation of alcohols by activated persulfate. ChemCatChem 2022. [DOI: 10.1002/cctc.202200787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rafael de Lima Oliveira
- Institute of Low Temperature and Structure ResearchPolish Academy of Sciences: Instytut Niskich Temperatur i Baden Strukturalnych im Wlodzimierza Trzebiatowskiego Polskiej Akademii Nauk Catalysis and Nanomaterials Okólna 2, 03948 Wroclaw POLAND
| | - Krzysztof Nicinski
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| | - Marcin Pisarek
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| | - Agnieszka Kaminska
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| | - Arne Thomas
- TU Berlin: Technische Universitat Berlin Chemistry POLAND
| | - Grzegorz Pasternak
- Wroclaw University of Technology: Politechnika Wroclawska Material Science POLAND
| | - Juan C. Colmenares
- Institute of Physical Chemistry Polish Academy of Sciences: Polska Akademia Nauk Instytut Chemii Fizycznej Catalysis POLAND
| |
Collapse
|
8
|
Hypercrosslinking Polymers Fabricated from Divinyl Benzene via Friedel-Crafts Addition Polymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2667-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Guo Y, Wang WD, Li S, Zhu Y, Wang X, Liu X, Zhang Y. A TEMPO-Functionalized Ordered Mesoporous Polymer as a Highly Active and Reusable Organocatalyst. Chem Asian J 2021; 16:3689-3694. [PMID: 34519415 DOI: 10.1002/asia.202100854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/12/2021] [Indexed: 11/12/2022]
Abstract
The properties of high stability, periodic porosity, and tunable nature of ordered mesoporous polymers make these materials ideal catalytic nanoreactors. However, their application in organocatalysis has been rarely explored. We report herein for the first time the incorporation of a versatile organocatalyst, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), into the pores of an FDU-type mesoporous polymer via a pore surface engineering strategy. The resulting FDU-15-TEMPO possesses a highly ordered mesoporous organic framework and enhanced stability, and shows excellent catalytic activity in the selective oxidation of alcohols and aerobic oxidative synthesis of 2-substituted benzoxazoles, benzimidazoles and benzothiazoles. Moreover, the catalyst can be easily recovered and reused for up to 7 consecutive cycles.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Shengyu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
10
|
Lee J, Hong S, Heo Y, Kang H, Kim M. TEMPO-radical-bearing metal-organic frameworks and covalent organic frameworks for catalytic applications. Dalton Trans 2021; 50:14081-14090. [PMID: 34622893 DOI: 10.1039/d1dt03143k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is known that 2,2,6,6-tetramethylpiperidinyl-1-oxy (or TEMPO) is a stable, radical-containing molecule, which has been utilized in various areas of organic synthesis, catalysis, polymer chemistry, electrochemical reactions, and materials chemistry. Its unique stability, attributable to its structural features, and molecular tunability allows for the modification of various materials, including the heterogenization of solid materials. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are porous and tunable because of their ligand or linker portion, and both have been extensively studied for use in catalytic applications. Therefore, synergistically combining the chemistry of TEMPO with the properties of MOFs and COFs is a natural choice and should allow for significant advancements, including improved recyclability and selectivity. This article focuses on TEMPO-bearing MOFs and COFs for use in catalytic applications. In addition, recent strategies related to the use of these functional porous materials in catalytic reactions are also discussed.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Seungpyo Hong
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Yoonji Heo
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Houng Kang
- Department of Chemistry Education, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|