1
|
Ujuagu AF, Sato Y, Lee ETT, Nishizawa S. Design of deep-red emissive forced intercalation-induced light-up peptide as an indicator for the HIV-1 TAR RNA-ligand assay: integration of benzo[c,d]indole-quinoline (BIQ) cyanine dye into Tat peptide. ANAL SCI 2024; 40:2089-2095. [PMID: 39102162 DOI: 10.1007/s44211-024-00642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
We report on a deep-red emissive fluorogenic peptide probe for human immunodeficiency virus-1 (HIV-1) trans-activation responsive (TAR) RNA as an indicator for fluorescence indicator displacement (FID) assay. The probe design is based on the concept of the forced intercalation of thiazole orange (TO) dyes (FIT) on the peptide backbone, as recently proposed by our group, where the Q (glutamic acid) residue in the Tat peptide (RKKRR-Q-RRR) is replaced with TO as if it were an amino acid surrogate. Here, instead of green emissive TO, we utilized a deep-red emissive benzo[c,d]indole-quinoline (BIQ) cyanine dye developed previously by our group for imaging of nucleolar RNA in living cells. The developed 9-mer FIT peptide (RKKRR-BIQ-RRR; named BIQ-FiLuP) exhibits a significant off-on signaling ability for TAR RNA (λem = 660 nm, I/I0 = 130-fold, Φfree = 0.0009, Φbound = 0.052), and the dissociation constant Kd reaches ca. 1 nM. When used in FID assay, BIQ-FiLuP, like TO-based FiLuP, is able to distinguish between competitive and noncompetitive inhibitors, which has never been demonstrated with all previous indicators for TAR RNA. Deep-red emissive BIQ-FiLuP facilitates the evaluation of green to yellow emissive ligands without suffering from optical interference. The combination use with green emissive TO-based FiLuP (λem = 541 nm) would cover the examination of a wide range of fluorescent test compounds.
Collapse
Affiliation(s)
- Akunna Francess Ujuagu
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan.
| | - En Ting Tabitha Lee
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
2
|
Carson LM, Watson EE. Peptide Nucleic Acids: From Origami to Editing. Chempluschem 2024; 89:e202400305. [PMID: 38972843 DOI: 10.1002/cplu.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Peptide nucleic acids (PNAs) combine the programmability of native nucleic acids with the robustness and ease of synthesis of a peptide backbone. These designer biomolecules have demonstrated tremendous utility across a broad range of applications, from the formation of bespoke biosupramolecular architectures to biosensing and gene regulation. Herein, we explore some of the key developments in the application of PNA in chemical biology and biotechnology in the last 5 years and present anticipated key areas of future development.
Collapse
Affiliation(s)
- Liam M Carson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Emma E Watson
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Nazzal H, Gupta MK, Fadila A, Yavin E. A Facile Synthesis of Red-Shifted Bis-Quinoline (BisQ) Surrogate Base. Molecules 2024; 29:4136. [PMID: 39274984 PMCID: PMC11397033 DOI: 10.3390/molecules29174136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Forced intercalation peptide nucleic acids (FIT-PNAs) are DNA mimics that act as RNA sensors. The sensing event occurs due to sequence-specific RNA hybridization, leading to a substantial increase in fluorescence. The fluorophore in the FIT-PNA is termed a surrogate base. This molecule typically replaces a purine in the PNA sequence. BisQ is a surrogate base that connects two quinolines via a monomethine bond. BisQ-based FIT-PNAs have excellent biophysical features that include high brightness and red-shifted emission (λem, max = 613 nm). In this report, we detail two chemical approaches that allow for the facile synthesis of the BisQ PNA monomer. In both cases, the key compound used for the synthesis of BisQ-CH2COOH is the tBu-ester-modified quinoline synthon (compound 5). Subsequently, one method uses the Alloc acid-protected PNA backbone, whereas the other uses the tBu ester-protected PNA backbone. In the latter case, the overall yield for BisQ acid (compound 7) and BisQ PNA monomer syntheses was 61% in six synthetic steps. This is a substantial improvement to the published procedures to date (7% total yield). Lastly, we have prepared an 11-mer FIT-PNA with either BisQ or thiazole orange (TO) and studied their photophysical properties. We find superior photophysical properties for the BisQ FIT-PNA in terms of the brightness and selectivity, highlighting the added value of using this surrogate base for RNA sensing.
Collapse
Affiliation(s)
- Huda Nazzal
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel
| | - Manoj Kumar Gupta
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel
| | - Amer Fadila
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel
| | - Eylon Yavin
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Lee ETT, Sato Y, Ujuagu AF, Nishizawa S. Forced intercalation-induced light-up peptides as fluorogenic indicators for the HIV-1 TAR RNA-ligand assay. Analyst 2024; 149:4179-4186. [PMID: 38860915 DOI: 10.1039/d4an00530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Fluorescence indicators capable of binding to human immunodeficiency virus-1 (HIV-1) trans-activation responsive (TAR) RNA are powerful tools for the exploratory studies of the identification of anti-HIV drug candidates. This work presents a new design strategy for fluorogenic indicators with a transactivator of transcription (Tat)-derived peptide based on the forced intercalation of thiazole orange (TO) dyes (FIT). The developed 9-mer FIT peptide (RKKRR-TO-RRR: named FiLuP) features the TO unit integrated onto a Dap (2,3-diaminopropionic acid) residue in the middle of the Tat peptide sequence; the Q (glutamic acid) residue in the Tat peptide (RKKRR-Q-RRR) is replaced with TO as if it were an amino acid surrogate. This facilitates a significant light-up response (450-fold at λem = 541 nm, Φfree = 0.0057, and Φbound = 0.61) upon binding to TAR RNA. The response of FiLuP is highly selective to TAR RNA over other non-cognate RNAs, and FiLuP maintains strong binding affinity (Kd = 1.0 ± 0.6 nM). Significantly, in contrast to previously developed Tat peptide-based FRET probes, FiLuP is able to discriminate between "competitive" and "noncompetitive" inhibitors when used in the fluorescence indicator displacement (FID) assay. The FID assay under stringent screening conditions is also possible, enabling super-strong competitive binders toward TAR RNA to be sieved out.
Collapse
Affiliation(s)
- En Ting Tabitha Lee
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Akunna F Ujuagu
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | - Seiichi Nishizawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
5
|
Mannully ST, Mahajna R, Nazzal H, Maree S, Zheng H, Appella DH, Reich R, Yavin E. Detecting the FLJ22447 lncRNA in Ovarian Cancer with Cyclopentane-Modified FIT-PNAs (cpFIT-PNAs). Biomolecules 2024; 14:609. [PMID: 38927013 PMCID: PMC11202290 DOI: 10.3390/biom14060609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic cancers that is typically diagnosed at the very late stage of disease progression. Thus, there is an unmet need to develop diagnostic probes for early detection of OC. One approach may rely on RNA as a molecular biomarker. In this regard, FLJ22447 lncRNA is an RNA biomarker that is over-expressed in ovarian cancer (OC) and in cancer-associated fibroblasts (CAFs). CAFs appear early on in OC as they provide a metastatic niche for OC progression. FIT-PNAs (forced intercalation-peptide nucleic acids) are DNA analogs that are designed to fluoresce upon hybridization to their complementary RNA target sequence. In recent studies, we have shown that the introduction of cyclopentane PNAs into FIT-PNAs (cpFIT-PNA) results in superior RNA sensors. Herein, we report the design and synthesis of cpFIT-PNAs for the detection of this RNA biomarker in living OC cells (OVCAR8) and in CAFs. cpFIT-PNA was compared to FIT-PNA and the cell-penetrating peptide (CPP) of choice was either a simple one (four L-lysines) or a CPP with enhanced cellular uptake (CLIP6). The combination of CLIP6 with cpFIT-PNA resulted in a superior sensing of FLJ22447 lncRNA in OVCAR8 cells as well as in CAFs. Moreover, incubation of CLIP6-cpFIT-PNA in OVCAR8 cells leads to a significant decrease (ca. 60%) in FLJ22447 lncRNA levels and in cell viability, highlighting the potential theranostic use of such molecules.
Collapse
Affiliation(s)
- Sheethal Thomas Mannully
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| | - Rawan Mahajna
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| | - Huda Nazzal
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| | - Salam Maree
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| | - Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA; (H.Z.); (D.H.A.)
| | - Daniel H. Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, MD 20892, USA; (H.Z.); (D.H.A.)
| | - Reuven Reich
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| | - Eylon Yavin
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 91120, Israel; (S.T.M.); (R.M.); (H.N.); (S.M.); (R.R.)
| |
Collapse
|
6
|
Tepper O, Appella DH, Zheng H, Dzikowski R, Yavin E. A Biotinylated cpFIT-PNA Platform for the Facile Detection of Drug Resistance to Artemisinin in Plasmodium falciparum. ACS Sens 2024; 9:1458-1464. [PMID: 38446423 PMCID: PMC10964236 DOI: 10.1021/acssensors.3c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
The evolution of drug resistance to many antimalarial drugs in the lethal strain of malaria (Plasmodium falciparum) has been a great concern over the past 50 years. Among these drugs, artemisinin has become less effective for treating malaria. Indeed, several P. falciparum variants have become resistant to this drug, as elucidated by specific mutations in the pfK13 gene. This study presents the development of a diagnostic kit for the detection of a common point mutation in the pfK13 gene of P. falciparum, namely, the C580Y point mutation. FIT-PNAs (forced-intercalation peptide nucleic acid) are DNA mimics that serve as RNA sensors that fluoresce upon hybridization to their complementary RNA. Herein, FIT-PNAs were designed to sense the C580Y single nucleotide polymorphism (SNP) and were conjugated to biotin in order to bind these molecules to streptavidin-coated plates. Initial studies with synthetic RNA were conducted to optimize the sensing system. In addition, cyclopentane-modified PNA monomers (cpPNAs) were introduced to improve FIT-PNA sensing. Lastly, total RNA was isolated from red blood cells infected with P. falciparum (WT strain - NF54-WT or mutant strain - NF54-C580Y). Streptavidin plates loaded with either FIT-PNA or cpFIT-PNA were incubated with the total RNA. A significant difference in fluorescence for mutant vs WT total RNA was found only for the cpFIT-PNA probe. In summary, this study paves the way for a simple diagnostic kit for monitoring artemisinin drug resistance that may be easily adapted to malaria endemic regions.
Collapse
Affiliation(s)
- Odelia Tepper
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University of Jerusalem,
Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC),
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Hongchao Zheng
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC),
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Ron Dzikowski
- Department
of Microbiology and Molecular Genetics, The institute for Medical
Research Israel - Canada, The Kuvin Center for the Study of Infectious
and Tropical Diseases, The Hebrew University-Hadassah
Medical School, Jerusalem 9112102, Israel
| | - Eylon Yavin
- The
Institute for Drug Research, The School of Pharmacy, The Faculty of
Medicine, The Hebrew University of Jerusalem,
Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| |
Collapse
|
7
|
Swenson C, Argueta-Gonzalez HS, Sterling SA, Robichaux R, Knutson SD, Heemstra JM. Forced Intercalation Peptide Nucleic Acid Probes for the Detection of an Adenosine-to-Inosine Modification. ACS OMEGA 2023; 8:238-248. [PMID: 36643573 PMCID: PMC9835161 DOI: 10.1021/acsomega.2c03568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The deamination of adenosine to inosine is an important modification in nucleic acids that functionally recodes the identity of the nucleobase to a guanosine. Current methods to analyze and detect this single nucleotide change, such as sequencing and PCR, typically require time-consuming or costly procedures. Alternatively, fluorescent "turn-on" probes that result in signal enhancement in the presence of target are useful tools for real-time detection and monitoring of nucleic acid modification. Here we describe forced-intercalation PNA (FIT-PNA) probes that are designed to bind to inosine-containing nucleic acids and use thiazole orange (TO), 4-dimethylamino-naphthalimide (4DMN), and malachite green (MG) fluorogenic dyes to detect A-to-I editing events. We show that incorporation of the dye as a surrogate base negatively affects the duplex stability but does not abolish binding to targets. We then determined that the identity of the adjacent nucleobase and temperature affect the overall signal and fluorescence enhancement in the presence of inosine, achieving an 11-fold increase, with a limit of detection (LOD) of 30 pM. We determine that TO and 4DMN probes are viable candidates to enable selective inosine detection for biological applications.
Collapse
Affiliation(s)
- Colin
S. Swenson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Sierra A. Sterling
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan Robichaux
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Steve D. Knutson
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Suparpprom C, Vilaivan T. Perspectives on conformationally constrained peptide nucleic acid (PNA): insights into the structural design, properties and applications. RSC Chem Biol 2022; 3:648-697. [PMID: 35755191 PMCID: PMC9175113 DOI: 10.1039/d2cb00017b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid or PNA is a synthetic DNA mimic that contains a sequence of nucleobases attached to a peptide-like backbone derived from N-2-aminoethylglycine. The semi-rigid PNA backbone acts as a scaffold that arranges the nucleobases in a proper orientation and spacing so that they can pair with their complementary bases on another DNA, RNA, or even PNA strand perfectly well through the standard Watson-Crick base-pairing. The electrostatically neutral backbone of PNA contributes to its many unique properties that make PNA an outstanding member of the xeno-nucleic acid family. Not only PNA can recognize its complementary nucleic acid strand with high affinity, but it does so with excellent specificity that surpasses the specificity of natural nucleic acids and their analogs. Nevertheless, there is still room for further improvements of the original PNA in terms of stability and specificity of base-pairing, direction of binding, and selectivity for different types of nucleic acids, among others. This review focuses on attempts towards the rational design of new generation PNAs with superior performance by introducing conformational constraints such as a ring or a chiral substituent in the PNA backbone. A large collection of conformationally rigid PNAs developed during the past three decades are analyzed and compared in terms of molecular design and properties in relation to structural data if available. Applications of selected modified PNA in various areas such as targeting of structured nucleic acid targets, supramolecular scaffold, biosensing and bioimaging, and gene regulation will be highlighted to demonstrate how the conformation constraint can improve the performance of the PNA. Challenges and future of the research in the area of constrained PNA will also be discussed.
Collapse
Affiliation(s)
- Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
9
|
Nucleic acid-based fluorescent sensor systems: a review. Polym J 2022. [DOI: 10.1038/s41428-022-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Tepper O, Peled I, Fastman Y, Heinberg A, Mitesser V, Dzikowski R, Yavin E. FIT-PNAs as RNA-Sensing Probes for Drug-Resistant Plasmodium falciparum. ACS Sens 2022; 7:50-59. [PMID: 34985283 DOI: 10.1021/acssensors.1c01481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detecting RNA at single-nucleotide resolution is a formidable task. Plasmodium falciparum is the deadliest form of malaria in humans and has shown to gain resistance to essentially all antimalarial drugs including artemisinin and chloroquine. Some of these drug resistances are associated with single-nucleotide polymorphisms (SNPs). Forced-intercalation peptide nucleic acids (FIT-PNAs) are DNA mimics that are designed as RNA-sensing molecules that fluoresce upon hybridization to their complementary (RNA) targets. We have previously designed and synthesized FIT-PNAs that target the C580Y SNP in the K13 gene of P. falciparum. In addition, we have now prepared FIT-PNAs that target the K76T SNP in the CRT gene of P. falciparum. Both SNPs are common ones associated with artemisinin and chloroquine drug resistance, respectively. Our FIT-PNAs are conjugated to a simple cell-penetrating peptide (CPP) that consists of eight d-lysines (dK8), which renders these FIT-PNAs cell-permeable to infected red blood cells (iRBCs). Herein, we demonstrate that FIT-PNAs clearly discriminate between wild-type (WT) strains (NF54-WT: artemisinin-sensitive or chloroquine-sensitive) and mutant strains (NF54-C580Y: artemisinin-resistant or Dd2: chloroquine-resistant) of P. falciparum parasites. Simple incubation of FIT-PNAs with live blood-stage parasites results in a substantial difference in fluorescence as corroborated by FACS analysis and confocal microscopy. We foresee FIT-PNAs as molecular probes that will provide a fast, simple, and cheap means for the assessment of drug resistance in malaria─a tool that would be highly desirable for the optimal choice of antimalarial treatment in endemic countries.
Collapse
Affiliation(s)
- Odelia Tepper
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| | - Itamar Peled
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| | - Yair Fastman
- Department of Microbiology and Molecular Genetics, The institute for Medical Research Israel − Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Adina Heinberg
- Department of Microbiology and Molecular Genetics, The institute for Medical Research Israel − Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Vera Mitesser
- Department of Microbiology and Molecular Genetics, The institute for Medical Research Israel − Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The institute for Medical Research Israel − Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Eylon Yavin
- The Institute for Drug Research, The School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem 9112102, Israel
| |
Collapse
|
11
|
Zhan X, Deng L, Chen G. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA. Biopolymers 2021; 113:e23476. [PMID: 34581432 DOI: 10.1002/bip.23476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
RNAs form secondary structures containing double-stranded base paired regions and single-stranded regions. Probing, detecting and modulating RNA structures and dynamics requires the development of molecular sensors that can differentiate the sequence and structure of RNAs present in viruses and cells, as well as in extracellular space. In this review, we summarize the recent progress on the development of chemically modified peptide nucleic acids (PNAs) for the selective recognition of double-stranded RNA (dsRNA) sequences over both single-stranded RNA (ssRNA) and double-stranded DNA (dsDNA) sequences. We also briefly discuss the applications of sequence-specific dsRNA-binding PNAs in sensing and stabilizing dsRNA structures and inhibiting dsRNA-protein interactions.
Collapse
Affiliation(s)
- Xuan Zhan
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Liping Deng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
12
|
Swenson CS, Lackey HH, Reece EJ, Harris JM, Heemstra JM, Peterson EM. Evaluating the effect of ionic strength on PNA:DNA duplex formation kinetics. RSC Chem Biol 2021; 2:1249-1256. [PMID: 34458838 PMCID: PMC8341200 DOI: 10.1039/d1cb00025j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid (PNA) is a unique synthetic nucleic acid analog that has been adopted for use in many biological applications. These applications rely upon the robust Franklin-Watson-Crick base pairing provided by PNA, particularly at lower ionic strengths. However, our understanding of the relationship between the kinetics of PNA:DNA hybridization and ionic strength is incomplete. Here we measured the kinetics of association and dissociation of PNA with DNA across a range of ionic strengths and temperatures at single-molecule resolution using total internal reflection fluorescence imaging. Unlike DNA:DNA duplexes, PNA:DNA duplexes are more stable at lower ionic strength, and we demonstrate that this is due to a higher association rate. While the dissociation rate of PNA:DNA duplexes is largely insensitive to ionic strength, it is significantly lower than that of DNA:DNA duplexes having the same number and sequence of base pairing interactions. The temperature dependence of PNA:DNA kinetic rate constants indicate a significant enthalpy barrier to duplex dissociation, and to a lesser extent, duplex formation. This investigation into the kinetics of PNA:DNA hybridization provides a framework towards better understanding and design of PNA sequences for future applications.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Hershel H Lackey
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | - Eric J Reece
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | - Joel M Harris
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | | | - Eric M Peterson
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| |
Collapse
|