1
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Sato K, Uemura H, Narumi T, Mase N. Leveraging Hydrazide as Protection for Carboxylic Acid: Suppression of Aspartimide Formation during Fmoc Solid-Phase Peptide Synthesis. Org Lett 2024; 26:4497-4501. [PMID: 38768369 DOI: 10.1021/acs.orglett.4c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite numerous optimizations in peptide synthesis, the formation of aspartimide remains a significant side reaction that needs to be addressed. Herein, we introduce an approach that utilizes hydrazide as a carboxylic-acid-protecting group to reduce the formation of aspartimide. The aspartic acid hydrazide effectively suppressed the formation of aspartimide, even under microwave conditions, and was readily converted to native aspartic acid using CuSO4 in an aqueous medium.
Collapse
Affiliation(s)
- Kohei Sato
- Department of Engineering Graduate School of Integrated Science and Technology, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Department of Applied Chemistry and Biochemical Engineering Faculty of Engineering, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Graduate School of Science and Technology, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Haruna Uemura
- Department of Engineering Graduate School of Integrated Science and Technology, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Tetsuo Narumi
- Department of Engineering Graduate School of Integrated Science and Technology, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Department of Applied Chemistry and Biochemical Engineering Faculty of Engineering, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Graduate School of Science and Technology, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Nobuyuki Mase
- Department of Engineering Graduate School of Integrated Science and Technology, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Department of Applied Chemistry and Biochemical Engineering Faculty of Engineering, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Graduate School of Science and Technology, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University; 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
3
|
da Hora GCA, Oh M, Mifflin MC, Digal L, Roberts AG, Swanson JMJ. Lasso Peptides: Exploring the Folding Landscape of Nature's Smallest Interlocked Motifs. J Am Chem Soc 2024; 146:4444-4454. [PMID: 38166378 PMCID: PMC11282585 DOI: 10.1021/jacs.3c10126] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Lasso peptides make up a class of natural products characterized by a threaded structure. Given their small size and stability, chemical synthesis would offer tremendous potential for the development of novel therapeutics. However, the accessibility of the pre-folded lasso architecture has limited this advance. To better understand the folding process de novo, simulations are used herein to characterize the folding propensity of microcin J25 (MccJ25), a lasso peptide known for its antimicrobial properties. New algorithms are developed to unambiguously distinguish threaded from nonthreaded precursors and determine handedness, a key feature in natural lasso peptides. We find that MccJ25 indeed forms right-handed pre-lassos, in contrast to past predictions but consistent with all natural lasso peptides. Additionally, the native pre-lasso structure is shown to be metastable prior to ring formation but to readily transition to entropically favored unfolded and nonthreaded structures, suggesting that de novo lasso folding is rare. However, by altering the ring forming residues and appending thiol and thioester functionalities, we are able to increase the stability of pre-lasso conformations. Furthermore, conditions leading to protonation of a histidine imidazole side chain further stabilize the modified pre-lasso ensemble. This work highlights the use of computational methods to characterize lasso folding and demonstrates that de novo access to lasso structures can be facilitated by optimizing sequence, unnatural modifications, and reaction conditions like pH.
Collapse
Affiliation(s)
- Gabriel C A da Hora
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Myongin Oh
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Marcus C Mifflin
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lori Digal
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Jakobsche CE, Xu M, MacArthur NS, Duong CM, Islam S, McElwee JP. Challenges and Strategies for Synthesizing Glutamyl Hydrazide Containing Peptides. Synlett 2022. [DOI: 10.1055/s-0042-1751397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractHerein, we detail several specific challenges that hinder the effective synthesis of glutamyl hydrazide containing peptides, and we describe a synthetic strategy to work around these challenges. Glutamyl hydrazide is an unnatural amino acid residue that bears an acyl hydrazide functional group on its side chain. This family of compounds has the potential to provide potent and selective inhibitor molecules for several families of enzymes. During peptide synthesis, however, these side chains—even in protected form—can derail the synthesis by initiating undesired side reactions. Avoiding these side reactions is critical for enabling effective access to this family of compounds.
Collapse
|
5
|
Bird MJ, Dawson PE. A Shelf Stable Fmoc Hydrazine Resin for the Synthesis of Peptide Hydrazides. Pept Sci (Hoboken) 2022; 114:e24268. [PMID: 36387422 PMCID: PMC9662761 DOI: 10.1002/pep2.24268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022]
Abstract
C-terminal hydrazides are an important class of synthetic peptides with an ever expanding scope of applications, but their widespread application for chemical protein synthesis has been hampered due to the lack of stable resin linkers for synthesis of longer and more challenging peptide hydrazide fragments. We present a practical method for the regeneration, loading, and storage of trityl-chloride resins for the production of hydrazide containing peptides, leveraging 9-fluorenylmethyl carbazate. We show that these resins are extremely stable under several common resin storage conditions. The application of these resins to solid phase peptide synthesis (SPPS) is demonstrated through the synthesis of the 40-mer GLP-1R agonist peptide "P5". These studies support the broad utility of Fmoc-NHNH-Trt resins for SPPS of C-terminal hydrazide peptides.
Collapse
Affiliation(s)
- Michael J. Bird
- Department of ChemistryThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Philip E. Dawson
- Department of ChemistryThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Guan I, Williams K, Liu JST, Liu X. Synthetic Thiol and Selenol Derived Amino Acids for Expanding the Scope of Chemical Protein Synthesis. Front Chem 2022; 9:826764. [PMID: 35237567 PMCID: PMC8883728 DOI: 10.3389/fchem.2021.826764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023] Open
Abstract
Cells employ post-translational modifications (PTMs) as key mechanisms to expand proteome diversity beyond the inherent limitations of a concise genome. The ability to incorporate post-translationally modified amino acids into protein targets via chemical ligation of peptide fragments has enabled the access to homogeneous proteins bearing discrete PTM patterns and empowered functional elucidation of individual modification sites. Native chemical ligation (NCL) represents a powerful and robust means for convergent assembly of two homogeneous, unprotected peptides bearing an N-terminal cysteine residue and a C-terminal thioester, respectively. The subsequent discovery that protein cysteine residues can be chemoselectively desulfurized to alanine has ignited tremendous interest in preparing unnatural thiol-derived variants of proteogenic amino acids for chemical protein synthesis following the ligation-desulfurization logic. Recently, the 21st amino acid selenocysteine, together with other selenyl derivatives of amino acids, have been shown to facilitate ultrafast ligation with peptidyl selenoesters, while the advancement in deselenization chemistry has provided reliable bio-orthogonality to PTMs and other amino acids. The combination of these ligation techniques and desulfurization/deselenization chemistries has led to streamlined synthesis of multiple structurally-complex, post-translationally modified proteins. In this review, we aim to summarize the latest chemical synthesis of thiolated and selenylated amino-acid building blocks and exemplify their important roles in conquering challenging protein targets with distinct PTM patterns.
Collapse
Affiliation(s)
- Ivy Guan
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Kayla Williams
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Joanna Shu Ting Liu
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Xuyu Liu
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Xuyu Liu,
| |
Collapse
|
7
|
Nyandoro K, Lamb CMG, Yu H, Shi J, Macmillan D. Investigation of acyl transfer auxiliary-assisted glycoconjugation for glycoprotein semi-synthesis. Org Biomol Chem 2022; 20:8506-8514. [DOI: 10.1039/d2ob01633h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We explore reactions between sugar-linked acyl transfer auxiliaries and peptide or protein thioesters, and find that various glycoprotein analogues are accessible.
Collapse
Affiliation(s)
| | | | - Haoran Yu
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jian Shi
- Department of Chemistry, UCL, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Derek Macmillan
- Department of Chemistry, UCL, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|