1
|
Wang ZS, Hong DG, Li H, Loh TP, Lu MZ. Palladium-Catalyzed Ring-Opening Defluorinative Hiyama Cross-Coupling of gem-Difluorocyclopropanes with Arylsilanes. J Org Chem 2025; 90:6054-6062. [PMID: 40249904 DOI: 10.1021/acs.joc.5c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
We report an efficient palladium-catalyzed ring-opening defluorinative Hiyama cross-coupling of gem-difluorocyclopropanes with structurally diverse (hetero)arylsilanes through C-C bond activation and C-F bond cleavage. This regioselective ring-opening defluorinative Hiyama cross-coupling features a broad substrate scope with excellent functional group compatibility, affording a diverse variety of linear 2-fluoroallylic scaffolds in good yields with high Z-selectivity.
Collapse
Affiliation(s)
- Zhi-Shang Wang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Dong-Guo Hong
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hongfang Li
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| |
Collapse
|
2
|
Gu L, Duan F, Ye J, Zhao Z, Su Z, Li W, Zhang Y, Li Z. Palladium-Catalyzed Dearomative Fluoroallylation of Pyrroles with gem-Difluorinated Cyclopropanes. Org Lett 2025; 27:3433-3439. [PMID: 40135740 DOI: 10.1021/acs.orglett.5c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
We herein report the development of a novel Pd-catalyzed dearomative functionalization of pyrroles with gem-difluorinated cyclopropanes (gem-F2CPs). This dearomative/ring-opening strategy streamlines the diversity-oriented synthesis (DOS) of α-quaternary 2-fluoroallylic 2H-pyrroles with a broad scope and excellent functional group tolerance, which enables the efficient late-stage transformation of complex bioactive molecule-derived gem-F2CPs. Derivation of the resulting fluoroallylic 2H-pyrroles to different synthetically useful fluoroallylic 2H-pyrrole motifs demonstrated the synthetic value of this methodology.
Collapse
Affiliation(s)
- Long Gu
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Feimeng Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Jiafeng Ye
- School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Zhipeng Zhao
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Zheng Su
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Yue Zhang
- School of Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Zhaodong Li
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
- School of Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| |
Collapse
|
3
|
Liu W, Ma Y, Huang Q, Sheng J, Lv L, Li Z. Pd-IPent-Catalyzed Defluorinative Annulation of gem-Difluorocyclopropanes with Enamides: Synthesis of Multisubstituted N-H Pyrroles. Org Lett 2025; 27:2151-2156. [PMID: 39984819 DOI: 10.1021/acs.orglett.5c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
We present a Pd-IPent-catalyzed ring-opening defluorinative annulation reaction of gem-difluorocyclopropanes with enamides, which provides a convenient and efficient strategy for the synthesis of multisubstituted N-H pyrrole derivatives. This transformation selectively cleaves the C1-C3 bond, two C-F bonds, and the C-N bond in a one-pot procedure. Additionally, this protocol allows for the modification of several bioactive molecules.
Collapse
Affiliation(s)
- Wenhao Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Yahui Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Qiuwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
4
|
Yan Y, Qian H, Lv L, Li Z. Pd-IHept-Catalyzed Ring-Opening of gem-Difluorocyclopropanes with Malonates Via Selective C-C Bond Cleavage: Synthesis of Monofluoroalkenes. J Org Chem 2024; 89:16253-16261. [PMID: 37737890 DOI: 10.1021/acs.joc.3c00744] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Monofluoroalkene scaffolds are frequently found in various functional molecules. Herein, we report a Pd-IHept-catalyzed (NHC = N-heterocyclic carbene) defluorinative functionalization approach for the synthesis of monofluoroalkenes from gem-difluorocyclopropanes and malonates. The flexible yet sterically hindered N,N'-bis(2,6-di(4-heptyl)phenyl)imidazol-2-ylidene ligand plays a key role in ensuring the high reaction efficiency. In addition, sterically hindered 1,1- and 1,2-disubstituted gem-difluorocyclopropanes could also be used in this transformation.
Collapse
Affiliation(s)
- Yuxuan Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Huijun Qian
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
5
|
Zhang X, Lin H, Tan B, Gu L, Lin Y, Xue M, Tang RY, Li Z. Synergistic Pd/Ni Dual-Catalyzed Cross-Coupling of Azaaryl Acetates with gem-Difluorinated Cyclopropanes. Org Lett 2024; 26:8956-8960. [PMID: 39374117 DOI: 10.1021/acs.orglett.4c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We herein report the development of a novel Pd/Ni dual-catalyzed ring-opening functionalization of gem-difluorinated cyclopropanes (gem-F2CPs) with azaaryl acetates. This bimetallic catalytic strategy streamlines the diversity-oriented synthesis (DOS) of α-quaternary 2-fluoroallylic azaaryl acetates with features of a broad scope and excellent functional group tolerance, which enables the efficient late-stage transformation of natural product-derived gem-F2CPs. The resulting α-quaternary azaaryl acetates could serve as a valuable platform to prepare other different fluoroallylic azaaryl scaffolds.
Collapse
Affiliation(s)
- Xuexue Zhang
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Haoyuan Lin
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Binhong Tan
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Long Gu
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Yang Lin
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Mingyue Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, 524048 Zhanjiang, China
| | - Ri-Yuan Tang
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Zhaodong Li
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
6
|
Wang Z, Liu C, Huang J, Huang L, Feng H. Palladium-Catalyzed Regioselective Monofluoroallylation of Indoles with gem-Difluorocyclopropanes. Org Lett 2024; 26:6905-6909. [PMID: 39088798 DOI: 10.1021/acs.orglett.4c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
We present a palladium-catalyzed ring-opening reaction that induces indoles to cross-couple with gem-difluorocyclopropanes. The reaction proceeds through a domino process of C-C bond activation and C-F bond elimination, followed by C-C(sp2) coupling to produce various 2-fluoroallylindoles. This method is characterized by its high functional group tolerance, good yields and high regioselectivity, under base-free conditions. The synthetic utility of the products is illustrated by the functionalization of the NH and C2 positions of the indole scaffold.
Collapse
Affiliation(s)
- Zhenjie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Chuang Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Junhai Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
7
|
Zhu Y, Jia J, Song X, Gong C, Xia Y. Double strain-release enables formal C-O/C-F and C-N/C-F ring-opening metathesis. Chem Sci 2024:d4sc03624g. [PMID: 39129767 PMCID: PMC11310891 DOI: 10.1039/d4sc03624g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024] Open
Abstract
Metathesis reactions have been established as a powerful tool in organic synthesis. While great advances were achieved in double-bond metathesis, like olefin metathesis and carbonyl metathesis, single-bond metathesis has received less attention in the past decade. Herein, we describe the first C(sp3)-O/C(sp3)-F bond formal cross metathesis reaction between gem-difluorinated cyclopropanes (gem-DFCPs) and epoxides under rhodium catalysis. The reaction involves the formation of a highly electrophilic fluoroallyl rhodium intermediate, which is capable of reacting with the oxygen atom in epoxides as weak nucleophiles followed by C-F bond reconstruction. The use of two strained ring substrates is the key to the success of the formal cross metathesis, in which the double strain release accounts for the driving force of the transformation. Additionally, azetidine also proves to be a suitable substrate for this transformation. The reaction offers a novel approach for the metathesis of C(sp3)-O and C(sp3)-N bonds, presenting new opportunities for single-bond metathesis.
Collapse
Affiliation(s)
- Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Jie Jia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Chunyu Gong
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| |
Collapse
|
8
|
Su Z, Tan B, Li Z, Huang H, Zhang Y. Palladium/Amine Dual-Catalyzed Tsuji-Trost Fluoroallylation of Aldehydes with gem-Difluorinated Cyclopropanes. Org Lett 2024; 26:5375-5379. [PMID: 38864753 DOI: 10.1021/acs.orglett.4c01882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
We herein disclose the Pd/amine dual-catalyzed ring-opening cross-coupling reaction between gem-difluorinated cyclopropanes (gem-F2CPs) with aldehydes, which enables the diversity-oriented synthesis (DOS) of 2-fluoroallylic aldehydes bearing all-carbon quaternary centers with features of broad scope and excellent functional group tolerance. The synthetic value of this Tsuji-Trost system was further demonstrated by late-stage functionalization of natural product-derived gem-F2CPs and the diverse synthesis of various fluoroallylic aldehyde derivatives, including alcohol, alkyne, alkene, and amine.
Collapse
Affiliation(s)
- Zheng Su
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Binhong Tan
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Zhaodong Li
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, China
| | - Yue Zhang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, China
| |
Collapse
|
9
|
Su Z, Tan B, He H, Chen K, Chen S, Lei H, Chen TG, Ni SF, Li Z. Enantioselective Tsuji-Trost α-Fluoroallylation of Amino Acid Esters with Gem-Difluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202402038. [PMID: 38412055 DOI: 10.1002/anie.202402038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
A novel enantioselective Tsuji-Trost-type cross coupling reaction between gem-difluorinated cyclopropanes and N-unprotected amino acid esters enabled by synergistic Pd/Ni/chiral aldehyde catalysis is presented herein. This transformation streamlined the diversity-oriented synthesis (DOS) of optically active α-quaternary α-amino acid esters bearing a linear 2-fluoroallylic motif, which served as an appealing platform for the construction of other valuable enantioenriched compounds. The key intermediates were confirmed by HRMS detection, while DFT calculations revealed that the excellent enantioselectivity was attributed to the stabilizing non-covalent interactions between the Pd(II)-π-fluoroallyl species and the Ni(II)-Schiff base complex.
Collapse
Affiliation(s)
- Zheng Su
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Binhong Tan
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Hui He
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Kaifeng Chen
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shixin Chen
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510641, China
| | - Tie-Gen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, 528400, Guangdong, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhaodong Li
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Yang H, Zeng Y, Song X, Che L, Jiang ZT, Lu G, Xia Y. Rhodium-Catalyzed Enantio- and Regioselective Allylation of Indoles with gem-Difluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202403602. [PMID: 38515395 DOI: 10.1002/anie.202403602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
The use of gem-difluorinated cyclopropanes (gem-DFCPs) as fluoroallyl surrogates under transition-metal catalysis has drawn considerable attention recently but such reactions are restricted to producing achiral or racemic mono-fluoroalkenes. Herein, we report the first enantioselective allylation of indoles under rhodium catalysis with gem-DFCPs. This reaction shows exceptional branched regioselectivity towards rhodium catalysis with gem-DFCPs, which provides an efficient route to enantioenriched fluoroallylated indoles with wide substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Hui Yang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lin Che
- Linyi University, School of Chemistry and Chemical Engineering, Linyi, 276000, China
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Feng A, Yang Y, Liu C, Zhang D. DFT Calculations Rationalize Unconventional Regioselectivity in Pd II-Catalyzed Defluorinative Alkylation of gem-Difluorocyclopropanes with Hydrazones. J Org Chem 2024. [PMID: 38766868 DOI: 10.1021/acs.joc.3c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Density functional theory (DFT) calculations have been conducted to gain insight into the unique formation of the branched alkylation product in the PdII-catalyzed defluorinative alkylation of gem-difluorocyclopropanes with hydrazones. The reaction is established to occur in sequence through oxidative addition, β-F elimination, η1-η3 isomerization, transmetalation, η3-η1 isomerization, 3,3'-reductive elimination, deprotonation/N2 extrusion, and proton abstraction. The rate-determining step of the reaction is identified as the β-F elimination, featuring an energy barrier of 28.6 kcal/mol. The 3,3'-reductive elimination transition states are the regioselectivity-determining transition states. The favorable noncovalent π-π interaction between the naphthyl group of gem-difluorocyclopropane and the phenyl group of hydrazone is found to be mainly responsible for the observed regioselectivity.
Collapse
Affiliation(s)
- Aili Feng
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yiying Yang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
12
|
Wu X, Song X, Xia Y. High-Valent Copper Catalysis Enables Regioselective Fluoroarylation of Gem-Difluorinated Cyclopropanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401243. [PMID: 38460153 PMCID: PMC11095216 DOI: 10.1002/advs.202401243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Indexed: 03/11/2024]
Abstract
Transition-metal (TM) catalyzed reaction of gem-difluorinated cyclopropanes (gem-DFCPs) has drawn much attention recently. The reaction generally occurs via the activation of the distal C─C bond in gem-DFCPs by a low-valent TM through oxidative addition, eventually producing mono-fluoro olefins as the coupling products. However, achieving regioselective activation of the proximal C─C bond in gem-DFCPs that overcomes the intrinsic reactivity via TM catalysis remains elusive. Here, a new reaction mode of gem-DFCPs enabled by high-valent copper catalysis, which allows exclusive activation of the congested proximal C─C bond is presented. The reaction that achieves fluoroarylation of gem-DFCPs uses NFSI (N-fluorobenzenesulfonimide) as electrophilic fluoro reagent and arenes as the C─H nucleophiles, enabling the synthesis of diverse CF3-containing scaffolds. It is proposed that a high-valent copper species plays an important role in the regioselective activation of the proximal C─C bond possibly via a σ-bond metathesis.
Collapse
Affiliation(s)
- Xiuli Wu
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Ying Xia
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| |
Collapse
|
13
|
Zeng Y, Jiang ZT, Xia Y. Selectivity in Rh-catalysis with gem-difluorinated cyclopropanes. Chem Commun (Camb) 2024; 60:3764-3773. [PMID: 38501197 DOI: 10.1039/d4cc00793j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Small-ring chemistry is a fascinating field in organic chemistry. gem-Difluorinated cyclopropanes, a unique class of cyclopropanes, have garnered significant interest due to their intrinsic high reactivity. In this context, gem-difluorinated cyclopropanes have been extensively investigated as fluoroallylic synthons in Pd-catalyzed ring-opening/cross-coupling reactions for the synthesis of monofluoroalkenes with linear or branched selectivity. In contrast, Rh-catalysis has revealed diverse selectivity in the reaction of gem-difluorinated cyclopropanes, such as regioselectivity, enantioselectivity, and chemoselectivity. This feature article aims to summarize our efforts towards developing Rh-catalyzed reactions of gem-difluorinated cyclopropanes, briefly discussing the design, selectivity, reaction mechanisms and future research prospects.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Qian H, Cheng ZP, Luo Y, Lv L, Chen S, Li Z. Pd/IPr BIDEA-Catalyzed Hydrodefluorination of gem-Difluorocyclopropanes: Regioselective Synthesis of Terminal Fluoroalkenes. J Am Chem Soc 2024; 146:24-32. [PMID: 37830927 DOI: 10.1021/jacs.3c07992] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Developing new strategies to enable chemo- and regioselective reductions is an important topic in chemical research. Herein, an efficient and regioselective Pd/IPrBIDEA-catalyzed ring-opening hydrodefluorination of gem-difluorocyclopropanes to access terminal fluoroalkenes is developed. The success of this transformation was attributed to the use of 3,3-dimethylallyl Bpin as a novel hydride donor. DFT calculations suggest that a direct 3,4'-hydride transfer via a 9-membered cyclic transition state is more favorable, which combined with the irreversibility of the reaction enables the unusual selectivity for the less thermodynamically stable terminal alkene isomer. This reaction mode is also applicable to a variety of regioselective allylic and propargyl reductions.
Collapse
Affiliation(s)
- Huijun Qian
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zachary P Cheng
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Yani Luo
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
15
|
Ahmed EAMA, Zhang H, Cao WG, Gong TJ. Palladium-Catalyzed Cross-Coupling of gem-Difluorocyclopropanes with gem-Diborylalkanes for the Synthesis of Boryl-Substituted Fluorinated Alkenes. Org Lett 2023; 25:9020-9024. [PMID: 38063840 DOI: 10.1021/acs.orglett.3c03626] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study presents a novel method for the regioselective coupling of gem-difluorinated cyclopropanes with gem-diborylmethane, utilizing a Pd-catalyst system. This innovative approach enables the synthesis of 2-fluoroalkenyl monoboronate scaffolds with high Z-selectivity. The resulting products undergo further transformations, including oxidation, Suzuki cross-coupling, and trifluoroborylation, all of which are achieved with good yields. This work introduces a valuable synthetic pathway to access important fluorinated compounds for various applications in organic chemistry.
Collapse
Affiliation(s)
| | - Hongchen Zhang
- College of pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Wen-Gen Cao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tian-Jun Gong
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
16
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Li D, Shen C, Si Z, Liu L. Palladium-Catalyzed Fluorinative Bifunctionalization of Aziridines and Azetidines with gem-Difluorocyclopropanes. Angew Chem Int Ed Engl 2023; 62:e202310283. [PMID: 37572320 DOI: 10.1002/anie.202310283] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/14/2023]
Abstract
An unprecedented Pd-catalyzed fluorinative bifunctionalization of aziridines and azetidines was successfully developed via regioselective C-C and C-F bond cleavage of gem-difluorocyclopropanes, leading to various β,β'-bisfluorinated amines and β,γ-bisfluorinated amines. This reaction was achieved by incorporating a 2-fluorinated allyl group and a fluorine atom scissored from gem-difluorocyclopropane in 100 % atom economy for the first time. The mechanistic investigations indicated that the reaction underwent amine attacking 2-fluorinated allyl palladium complex to generate η2 -coordinated N-allyl aziridine followed by fluoride ligand transfer affording the final β- and γ-fluorinated amines.
Collapse
Affiliation(s)
- Dongdong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zhiyao Si
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
18
|
Zhao YR, Ma ZY, Liu L, Gao P, Duan XH, Hu M. Synthesis of α-Difluoromethylene Ethers via Photoredox-Induced Hyperconjugative Ring Opening of gem-Difluorocyclopropanes. J Org Chem 2023; 88:3787-3793. [PMID: 36827360 DOI: 10.1021/acs.joc.2c03062] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Fluorinated compounds have found widespread applications in pharmaceuticals, agrochemicals, and materials science. Precise construction of α-difluoromethylene ether (CF2-O) moiety in organic molecules is of high demand. Herein, a visible light-promoted reaction protocol for the synthesis of α-difluoromethylene ether from gem-difluorocyclopropane is described. The key ring-opening step is induced by hyperconjugative interaction of cyclopropane with photo-oxidized aromatic rings. This reaction is easy scale-up, and the products bearing a synthetic handle enable their further manipulation.
Collapse
Affiliation(s)
- Yu-Rou Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhi-Yong Ma
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
19
|
Wang X, Patureau FW. Pd-catalyzed access to mono- and di-fluoroallylic amines from primary anilines. Chem Commun (Camb) 2023; 59:486-489. [PMID: 36530134 PMCID: PMC9814328 DOI: 10.1039/d2cc05844h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Pd-catalyzed highly selective synthesis of mono- and di-2-fluoroallylic amines from gem-difluorocyclopropanes and ubiquitous unprotected primary anilines is herein described. Initial kinetic investigations suggest a first order in the gem-difluorocyclopropane substrate, as well as a circa zeroth order in the aniline coupling partner. The newly produced fluoroallylic motifs should find important applications in synthetic as well as medicinal chemistry and stimulate the further development of coupling methods based on strained cyclic building blocks.
Collapse
Affiliation(s)
- Xingben Wang
- Institute of Organic Chemistry, RWTH Aachen UniversityLandoltweg 1Aachen 52074Germanyhttps://www.patureau-oc-rwth-aachen.de
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen UniversityLandoltweg 1Aachen 52074Germanyhttps://www.patureau-oc-rwth-aachen.de
| |
Collapse
|
20
|
Liu J, Chen J, Liu T, Liu J, Zeng Y. Recent Advances in the Reactions of β-Naphthol at α-Position. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
21
|
Wu X, Zeng Y, Jiang ZT, Zhu Y, Xie L, Xia Y. Lewis Acid-Catalyzed Ring-Opening Cross-Coupling Reaction of gem-Difluorinated Cyclopropanes Enabled by C–F Bond Activation. Org Lett 2022; 24:8429-8434. [DOI: 10.1021/acs.orglett.2c03544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuli Wu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
22
|
Zeng Y, Yang H, Du J, Huang Q, Huang G, Xia Y. Rh-catalyzed regio-switchable cross-coupling of gem-difluorinated cyclopropanes with allylboronates to structurally diverse fluorinated dienes. Chem Sci 2022; 13:12419-12425. [PMID: 36382270 PMCID: PMC9629036 DOI: 10.1039/d2sc04118a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/04/2022] [Indexed: 09/23/2023] Open
Abstract
The control of linear/branched selectivity is one of the major focuses in transition-metal catalyzed allyl-allyl cross-coupling reactions, in which bond connection occurs at the terminal site of both the allyl fragments forming different types of 1,5-dienes. Herein, terminal/internal regioselectivity is investigated and found to be switchable in allyl-allyl cross-coupling reactions between gem-difluorinated cyclopropanes and allylboronates. The controlled terminal/internal regioselectivity arises from the fine-tuning of the rhodium catalytic system. Fluorinated 1,3-dienes, 1,4-dienes and 1,5-dienes are therefore produced in good yields with respectively isomerized terminal, internal, and terminal regioselectivity.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Hui Yang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Jiayi Du
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Qin Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Guoliang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| |
Collapse
|
23
|
Lv L, Qian H, Li Z. Catalytic Diversification of gem‐Difluorocyclopropanes: Recent Advances and Challenges. ChemCatChem 2022. [DOI: 10.1002/cctc.202200890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leiyang Lv
- Renmin University of China Department of Chemistry CHINA
| | | | - Zhiping Li
- Renmin University of China Chemistry CHINA
| |
Collapse
|
24
|
Jiang ZT, Chen Z, Zeng Y, Shi JL, Xia Y. Enantioselective Formation of All-Carbon Quaternary Stereocenters in gem-Difluorinated Cyclopropanes via Rhodium-Catalyzed Stereoablative Kinetic Resolution. Org Lett 2022; 24:6176-6181. [PMID: 35951978 DOI: 10.1021/acs.orglett.2c02410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report an effective method to offer chiral gem-difluorinated cyclopropanes containing an all-carbon quaternary stereocenter by rhodium-catalyzed stereoablative kinetic resolution. The activation of a sterically hindered all-carbon quaternary C-C bond through oxidative addition with a chiral rhodium complex is proposed as the enantiodetermining step. A wide range of gem-difluorinated cyclopropanes can be obtained with excellent ee values (ee = 87% to >99.9%), which are demonstrated to be useful chiral fluorine-containing building blocks by a series of postfunctionalizations.
Collapse
Affiliation(s)
- Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhengzhao Chen
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jiang-Ling Shi
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Ai Y, Yang H, Duan C, Li X, Yu S. Cobalt-Catalyzed Fluoroallyllation of Carbonyls via C-C Activation of gem-Difluorocyclopropanes. Org Lett 2022; 24:5051-5055. [PMID: 35833731 DOI: 10.1021/acs.orglett.2c01821] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new Co-catalyzed sequential C-C and C-F activation of gem-difluorinated cyclopropanes (gem-FCPs) to form nucleophilic fluoroallylcobalt, followed by addition to aldehydes, is reported. The protocol features the regioselective cleavage of dual chemical bonds of readily available gem-FCPs to prepare easily separable linear (Z)- and (E)-fluorinated homoallylic alcohols with a broad scope. This discovery established a new strategy for the efficient transformation of gem-FCPs as well as the synthesis of challenging fluorinated homoallylic alcohols.
Collapse
Affiliation(s)
- Yinan Ai
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hanlin Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chunying Duan
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xingwei Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, Shandong 266237, China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, Shaanxi 710062, China
| | - Songjie Yu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China.,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
26
|
Zeng Y, Gao H, Zhu Y, Jiang ZT, Lu G, Xia Y. Site-Divergent Alkenyl C–H Fluoroallylation of Olefins Enabled by Tunable Rhodium Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Lv L, Qian H, Crowell AB, Chen S, Li Z. Pd/NHC-Controlled Regiodivergent Defluorinative Allylation of gem-Difluorocyclopropanes with Allylboronates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Huijun Qian
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Anna B. Crowell
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
28
|
Yuan W, Li X, Qi Z, Li X. Palladium-Catalyzed Synthesis of Functionalized Indoles by Acylation/Allylation of 2-Alkynylanilines with Three-Membered Rings. Org Lett 2022; 24:2093-2098. [PMID: 35274957 DOI: 10.1021/acs.orglett.2c00246] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Palladium-catalyzed synthesis of 3-acyl and -allyl indoles has been realized by merging nucleophilic cyclization of ortho-alkynylanilines with ring opening of three-membered rings such as cyclopropenones and gem-difluorinated cyclopropanes. These functionalized indoles were obtained in moderate to high yields with high stereoselectivity in both cases. This protocol provides an alternative method toward functionalized indoles under mild and redox-neutral conditions.
Collapse
Affiliation(s)
- Weiliang Yuan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Xiaojiao Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Zisong Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| |
Collapse
|
29
|
Baker RJ, Ching J, Hou TR, Franzoni I, Lautens M. Dearomative Cyclopropanation of Naphthols via Cyclopropene Ring‐Opening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel J. Baker
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Justin Ching
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Teh Ren Hou
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Ivan Franzoni
- NuChem Sciences Inc. 350 rue Cohen, Suite 201 Saint-Laurent Quebec H4R 2N6 Canada
| | - Mark Lautens
- Davenport Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
30
|
Sun P, Jia ZH, Tang L, Zheng H, Li ZR, Chen LY, Li Y. Enantioselective Synthesis of 2-Indolyl Methanamine Derivatives Through Disulfonimides-Catalyzed Friedel–Crafts C2-Alkylation of 3-Substituted Indoles with Imines. Org Biomol Chem 2022; 20:1916-1925. [DOI: 10.1039/d1ob02281d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric Friedel-Crafts C2-alkylation between 3-substituted indoles and imines catalyzed by chiral BINOL-derived disulfonimides (DSIs) has been developed. This reaction tolerated a wide range of 3-substituted indoles and imines, affording...
Collapse
|
31
|
Fan YH, Guan XY, Li WP, Lin CZ, Bing DX, Sun MZ, Cheng G, Cao J, Chen JJ, Deng QH. Synthesis of amidines via iron-catalyzed dearomative amination of β-naphthols with oxadiazolones. Org Chem Front 2022. [DOI: 10.1039/d1qo01687c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and convenient method for the synthesis of amidines bearing a β-naphthalenone moiety catalyzed by cheap iron(ii) chloride is presented by employing oxadiazolones as the nitrene precursors.
Collapse
Affiliation(s)
- Yan-Hui Fan
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-Yu Guan
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Pei Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Cheng-Zhou Lin
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - De-Xian Bing
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Mei-Zhi Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Guo Cheng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jing Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jun-Jie Chen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
32
|
Baker RJ, Ching J, Hou TR, Franzoni I, Lautens M. Dearomative Cyclopropanation of Naphthols via Cyclopropene Ring-Opening. Angew Chem Int Ed Engl 2021; 61:e202116171. [PMID: 34939302 DOI: 10.1002/anie.202116171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/07/2022]
Abstract
The dearomatization of 2-naphthols represents a simple method for the construction of complex 3D structures from simple planar starting materials. We describe a cyclopropanation of 2-naphthols that proceeds via cyclopropene ring-opening using rhodium and acid catalysis under mild conditions. The vinyl cyclopropane molecules were formed with high chemoselectivity and scalability, which could be further functionalized at different sites. Both computational and experimental evidence were used to elucidate the reaction mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Mark Lautens
- University of Toronto, Dept. of Chemistry, 80 St. George Street, M5S 3H6, Toronto, CANADA
| |
Collapse
|
33
|
Lv L, Qian H, Ma Y, Huang S, Yan X, Li Z. Ligand-controlled regioselective and chemodivergent defluorinative functionalization of gem-difluorocyclopropanes with simple ketones. Chem Sci 2021; 12:15511-15518. [PMID: 35003579 PMCID: PMC8654029 DOI: 10.1039/d1sc05451a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/07/2021] [Indexed: 12/14/2022] Open
Abstract
Modulating the reaction selectivity is highly attractive and pivotal to the rational design of synthetic regimes. The defluorinative functionalization of gem-difluorocyclopropanes constitutes a promising route to construct β-vinyl fluorine scaffolds, whereas chemo- and regioselective access to α-substitution patterns remains a formidable challenge. Presented herein is a robust Pd/NHC ligand synergistic strategy that could enable the C-F bond functionalization with exclusive α-regioselectivity with simple ketones. The key design adopted enolates as π-conjugated ambident nucleophiles that undergo inner-sphere 3,3'-reductive elimination warranted by the sterically hindered-yet-flexible Pd-PEPPSI complex. The excellent branched mono-defluorinative alkylation was achieved with a sterically highly demanding IHept ligand, while subtly less bulky SIPr acted as a bifunctional ligand that not only facilitated α-selective C(sp3)-F cleavage, but also rendered the newly-formed C(sp2)-F bond as the linchpin for subsequent C-O bond formation. These examples represented an unprecedented ligand-controlled regioselective and chemodivergent approach to various mono-fluorinated terminal alkenes and/or furans from the same readily available starting materials.
Collapse
Affiliation(s)
- Leiyang Lv
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Huijun Qian
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Yangyang Ma
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Shiqing Huang
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China Beijing 100872 China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China Beijing 100872 China
| |
Collapse
|
34
|
Pan HP, Zhu ZQ, Qiu ZW, Liu HF, Ma JD, Li BQ, Feng N, Ma AJ, Peng JB, Zhang XZ. Dearomatization of 2,3-Disubstituted Indoles via 1,8-Addition of Propargylic (Aza)- para-Quinone Methides. J Org Chem 2021; 86:16518-16534. [PMID: 34714074 DOI: 10.1021/acs.joc.1c01857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dearomatization of indole is a useful strategy to access indolimines: a motif widely exists in biologically active molecules and natural products. Herein, an efficient method for the dearomatization of 2,3-disubstituted indoles to generate diverse indolimines with tetrasubstituted allenes is described. This work accomplishes dearomatization of 2,3-disubstituted indoles through 1,8-addition of (aza)-para-quinone methides, which are generated in situ from propargylic alcohols. A series of synthetically useful indolimines containing quaternary carbon centers and tetrasubstituted allenes can be accessed in good yields (up to 99%). Additionally, the separability of product isomers, diversified product transformations, and easy scale-up of the reaction demonstrate the potential application of this method.
Collapse
Affiliation(s)
- Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jiong-Dong Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
35
|
Zhang SS, Xue J, Gu Q, Jiang X, You SL. Dearomatization reaction of β-naphthols with disulfurating reagents. Org Biomol Chem 2021; 19:8761-8771. [PMID: 34581384 DOI: 10.1039/d1ob01731d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
p-TsOH-catalyzed intermolecular dearomatization reactions of β-naphthols with disulfurating reagents were developed. Various β-naphthalenones bearing a quaternary carbon stereogenic center were obtained smoothly in good to excellent yields with high chemoselectivity in the presence of 5 mol% p-TsOH. This reaction features mild reaction conditions and excellent functional group tolerance.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Jiahui Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
36
|
Xie JH, Zheng C, You SL. Palladium-Catalyzed Dearomative Methoxyallylation of 3-Nitroindoles with Allyl Carbonates. Angew Chem Int Ed Engl 2021; 60:22184-22188. [PMID: 34273125 DOI: 10.1002/anie.202107139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 01/18/2023]
Abstract
Herein we report a Pd-catalyzed dearomative methoxyallylation of 3-nitroindoles with readily available allyl carbonates. Good yields (up to 86 %) and diastereoselectivity (up to >20:1 dr) are obtained for a wide range of substrates. The compatibility of gram-scale synthesis and the relatively low catalyst loading (down to 1 mol % of [Pd]) enhance the practicality of this method. The kinetic experiments indicate that the rate-determining step of this reaction is the nucleophilic attack of the alkoxide anion.
Collapse
Affiliation(s)
- Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
37
|
Palladium‐Catalyzed Dearomative Methoxyallylation of 3‐Nitroindoles with Allyl Carbonates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Xiong B, Chen X, Liu J, Zhang X, Xia Y, Lian Z. Stereoselective gem-Difluorovinylation of gem-Difluorinated Cyclopropanes Enabled by Ni/Pd Cooperative Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02952] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Baojian Xiong
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuemeng Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiangjun Liu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying Xia
- West China School of Public Health, West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Suliman AMY, Ahmed EAMA, Gong TJ, Fu Y. Three-component reaction of gem-difluorinated cyclopropanes with alkenes and B 2pin 2 for the synthesis of monofluoroalkenes. Chem Commun (Camb) 2021; 57:6400-6403. [PMID: 34085685 DOI: 10.1039/d1cc01620b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Borylative difunctionalization of alkenes has emerged as a powerful approach for synthesizing highly functionalized molecules. Herein, dual Cu/Pd-catalysed borylfluoroallylation of alkenes was smoothly achieved by using gem-difluorinated cyclopropanes and B2pin2, providing the corresponding monofluoroalkene scaffolds in moderate to high yields with excellent stereoselectivity. Moreover, an array of synthetic building blocks can be obtained by downstream transformations.
Collapse
Affiliation(s)
- Ayman M Y Suliman
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China. and Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Ebrahim-Alkhalil M A Ahmed
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China. and Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China. and Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
40
|
Xia Y, Jiang ZT, Zeng Y. Rhodium-Catalyzed Direct Allylation of Simple Arenes by Using Gem-Difluorinated Cyclopropanes as Allyl Surrogates. Synlett 2021. [DOI: 10.1055/a-1536-2738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Gem-difluorinated cyclopropanes have become an important type of allyl surrogate in transition-metal-catalyzed ring-opening processes, as demonstrated recently through various important advances, especially with palladium catalysis. The versatile fluorinated allyl species generated in this way from gem-difluorinated cyclopropanes exhibit unique advantages compared with conventional allyl sources. By using gem-difluorinated cyclopropanes as allyl surrogates, we achieved a direct allylation of simple arenes through rhodium catalysis under mild conditions. This transformation permits directing-group-free allylation of simple arenes, including electron-neutral, electron-rich, and electron-deficient ones. Here, we give a brief introduction to this area and we discuss our thoughts regarding our recent work and its design.1 Introduction2 Our Design3 Condition Optimization and Substrate Scope4 Applications in Synthesis5 Mechanistic Discussions6 Conclusion and Outlook
Collapse
|
41
|
Zhou PX, Yang X, Wang J, Ge C, Feng W, Liang YM, Zhang Y. Palladium-Catalyzed C-H Allylation of Electron-Deficient Polyfluoroarenes with gem-Difluorinated Cyclopropanes. Org Lett 2021; 23:4920-4924. [PMID: 34085517 DOI: 10.1021/acs.orglett.1c01699] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed C-H allylation of electron-deficient polyfluoroarenes with gem-difluorinated cyclopropanes is reported. It provides a useful and facile approach to 2-fluoroallylic polyfluoroarenes in moderate to excellent yields with high Z-selectivity. In addition, this new approach has good functional group compatibility and broad substrate scope.
Collapse
Affiliation(s)
- Ping-Xin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, P. R. China
| | - Xiaozhe Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, P. R. China
| | - Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, P. R. China
| | - Chunpo Ge
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, P. R. China
| | - Wang Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, P. R. China
| |
Collapse
|
42
|
Bobrova AY, Novikov MA, Tomilov YV. (2-Fluoroallyl)pyridinium tetrafluoroborates: novel fluorinated electrophiles for Pd-catalyzed allylic substitution. Org Biomol Chem 2021; 19:4678-4684. [PMID: 34076023 DOI: 10.1039/d1ob00567g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An efficient two-step approach to 2-fluoroallyl amines was developed that involves the synthesis of (2-fluoroallyl)pyridinium tetrafluoroborates from readily available gem-bromofluorocyclopropanes and the application of the former as novel and stable 2-fluoroallyl electrophiles for Pd-catalyzed allylic substitution.
Collapse
Affiliation(s)
- Angelina Yu Bobrova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. and Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya pl., 125047 Moscow, Russian Federation
| | - Maxim A Novikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Yury V Tomilov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
43
|
Jiang Z, Huang J, Zeng Y, Hu F, Xia Y. Rhodium Catalyzed Regioselective C−H Allylation of Simple Arenes via C−C Bond Activation of
Gem
‐difluorinated Cyclopropanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhong‐Tao Jiang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy Sichuan University Chengdu 610041 China
| | - Jiangkun Huang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy Sichuan University Chengdu 610041 China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy Sichuan University Chengdu 610041 China
| | - Fangdong Hu
- School of Chemistry and Chemical Engineering Linyi University Linyi 276005 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy Sichuan University Chengdu 610041 China
| |
Collapse
|
44
|
Jiang ZT, Huang J, Zeng Y, Hu F, Xia Y. Rhodium Catalyzed Regioselective C-H Allylation of Simple Arenes via C-C Bond Activation of Gem-difluorinated Cyclopropanes. Angew Chem Int Ed Engl 2021; 60:10626-10631. [PMID: 33599074 DOI: 10.1002/anie.202016258] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Indexed: 01/13/2023]
Abstract
Herein, we report a rhodium catalyzed directing-group free regioselective C-H allylation of simple arenes. Readily available gem-difluorinated cyclopropanes can be employed as highly reactive allyl surrogates via a sequence of C-C and C-F bond activation, providing allyl arene derivatives in good yields with high regioselectivity under mild conditions. The robust methodology enables facile late-stage functionalization of complex bioactive molecules. The high efficiency of this reaction is also demonstrated by the high turnover number (TON, up to 1700) of the rhodium catalyst on gram-scale experiments. Preliminary success on kinetic resolution of this transformation is achieved, providing a promising access to enantio-enriched gem-difluorinated cyclopropanes.
Collapse
Affiliation(s)
- Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Jiangkun Huang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Fangdong Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
45
|
Suliman AMY, Ahmed EAMA, Gong TJ, Fu Y. Cu/Pd-Catalyzed cis-Borylfluoroallylation of Alkynes for the Synthesis of Boryl-Substituted Monofluoroalkenes. Org Lett 2021; 23:3259-3263. [PMID: 33872017 DOI: 10.1021/acs.orglett.1c00668] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Monofluoroalkenes normally act as metabolically stable bioisosteres for amide groups (-NH-CO-) and have widespread applications in drug discovery. Additionally, they are widely used as building blocks in organic synthesis. In this study, the Cu/Pd-catalyzed cis-borylfluoroallylation of alkynes was achieved, providing a modular and general tactic for the preparation of monofluorinated alkene scaffolds with high regioselectivity and stereoselectivity. Moreover, an array of synthetic building blocks can be generated by downstream transformations.
Collapse
Affiliation(s)
- Ayman M Y Suliman
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Ebrahim-Alkhalil M A Ahmed
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
46
|
Lu J, Liang R, Jia Y. Copper-Catalyzed Intramolecular Dearomative Arylation of Naphthylamines. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|