1
|
Zhang X, Jiao L, Yuan T, Chen J, Fan H, Hou J, Lv G, Yang Z, Wu Y. Photoexcited Copper-Catalyzed Difunctionalization of Alkenes for the Synthesis of 2,5-Diamino Acid Derivatives via Uncommon 1,2-Hydrogen Atom Transfer of Amidyl Radicals. Org Lett 2025. [PMID: 40415329 DOI: 10.1021/acs.orglett.5c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Compared with 1,5-hydrogen atom transfer (1,5-HAT) processes, 1,2-HAT processes have been reported less frequently. And, the synthesis of 2,5-diamino acid derivatives via a mild photocatalytic approach has not been reported yet. Herein, we report a photoexcited copper-catalyzed difunctionalization of alkenes for the synthesis of 2,5-diamino acid derivatives via uncommon 1,2-HAT. The potential synthetic merit of this reaction is proven through a scale-up reaction. Notably, this new protocol is successfully applied to obtain a series of 2,5-diamino acid derivatives.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, 3rd Section, South Renmin Road, Chengdu 610041, P. R. China
| | - Liulin Jiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, 3rd Section, South Renmin Road, Chengdu 610041, P. R. China
| | - Ting Yuan
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, 3rd Section, South Renmin Road, Chengdu 610041, P. R. China
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, 3rd Section, South Renmin Road, Chengdu 610041, P. R. China
| | - Hongying Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, 3rd Section, South Renmin Road, Chengdu 610041, P. R. China
| | - Jinyu Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, 3rd Section, South Renmin Road, Chengdu 610041, P. R. China
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, 3rd Section, South Renmin Road, Chengdu 610041, P. R. China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zhongzhen Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, 3rd Section, South Renmin Road, Chengdu 610041, P. R. China
| |
Collapse
|
2
|
Ye Y, Ji D, Zhou C, Su Y, Bao X, Huo C. Copper-Catalyzed Successive Radical Reactions of Glycine Derivatives. Org Lett 2025; 27:1054-1059. [PMID: 39817301 DOI: 10.1021/acs.orglett.4c04707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Here, we present a three-component successive radical addition strategy for the preparation of complex noncanonical α-amino acids from easily available glycine derivatives, alkenes, and aryl sulfonium salts via a copper-catalyzed photoredox-neutral catalytic cycle. The utility of this method is further demonstrated by its application in late-stage site-selective modifications of glycine residues in short peptides. It is worth noting that only 1 mol % copper catalyst is required in this reaction, demonstrating high catalytic efficiency.
Collapse
Affiliation(s)
- Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dongsheng Ji
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Chenxing Zhou
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yingpeng Su
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
3
|
Yang S, Qiu CY, Hu H, Jiang Y, Chen M. Visible-Light-Driven Synthesis of N-Alkyl α-Amino Acid Derivatives from Unactivated Alkyl Bromides and In Situ Generated Imines. Org Lett 2024; 26:8416-8423. [PMID: 39311501 DOI: 10.1021/acs.orglett.4c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
One-pot, multicomponent reactions are known for their green and efficient nature. We report a novel three-component reaction of alkyl amines, alkyl glyoxylates, and unactivated alkyl bromides under visible-light-induced palladium catalysis, yielding N-alkyl unnatural α-amino acid derivatives. This method offers mild conditions, broad substrate scope, and excellent functional group tolerance without requiring stoichiometric organometallic reagents. The approach has promising applications in protein engineering and drug discovery.
Collapse
Affiliation(s)
- Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Hao Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
4
|
Ye Y, Zhang X, Kong P, Yuan Y, Zhao X, Huo C. Radical-polar crossover reaction of glycine derivatives. Chem Commun (Camb) 2024; 60:10378-10381. [PMID: 39221664 DOI: 10.1039/d4cc02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here we report a visible-light facilitated radical addition strategy for the preparation of various natural or unnatural α-amino acids from readily available glycine derivatives and alkenes. A key aspect in achieving this side carbon chain introduction reaction, while circumventing the well-documented cyclization pathway, was the employment of a radical-polar crossover strategy under redox neutral conditions.
Collapse
Affiliation(s)
- Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Xin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Peng Kong
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Xiaolong Zhao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
5
|
Kong P, Ye Y, Zhang X, Bao X, Huo C. Alkylation of Glycine Derivatives through a Synergistic Single-Electron Transfer and Halogen-Atom Transfer Process. Org Lett 2024; 26:7507-7513. [PMID: 39207059 DOI: 10.1021/acs.orglett.4c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here, we present a versatile method for forming C(sp3)-C(sp3) bonds, enabling the synthesis of a range of natural and non-natural amino acids. This approach utilizes readily available glycine derivatives and alkyl iodides, combining single-electron transfer and halogen-atom transfer processes. The utility of this step-economic and redox-economic C(sp3)-C(sp3) bond formation is further highlighted in the late-stage site-selective modifications of the glycine residue in short peptides.
Collapse
Affiliation(s)
- Peng Kong
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xin Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
6
|
Zhou C, Ji D, Wang X, Yang C, Zhou P, Huo C. Decyanative Heteroarylations of Glycine Derivatives. Org Lett 2024; 26:5323-5328. [PMID: 38885186 DOI: 10.1021/acs.orglett.4c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Amino acids and aromatic nitrogen heterocycles are widely used in pharmaceuticals. Herein, we present an effective visible-light-driven thiobenzoic acid (TBA)-catalyzed decyanative C(sp3)-H heteroarylation of glycine derivatives. This process occurs under mild and straightforward conditions, affording a range of valuable yet challenging-to-obtain α-heteroaryl amino acid derivatives. Moreover, this organocatalytic C(sp3)-C(sp2) bond formation reaction is applicable to the late-stage modification of various short peptides.
Collapse
Affiliation(s)
- Chenxing Zhou
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dongsheng Ji
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xuxia Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Caixia Yang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Pengxin Zhou
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
7
|
Pan C, Chen D, Cheng Y, Yu JT. Photocatalytic redox-neutral α-C(sp 3)-H pyridination of glycine derivatives and N-arylamines with cyanopyridines. Chem Commun (Camb) 2024; 60:4451-4454. [PMID: 38563645 DOI: 10.1039/d4cc00906a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A photo-induced α-C(sp3)-H decyanative pyridination of N-arylglycine derivatives with cyanopyridines was developed. This reaction was performed under organic photocatalytic and redox-neutral conditions via a radical-radical cross-coupling process. Besides, the protocol was also suitable for the C(sp3)-H pyridination of N-aryl tetrahydroisoquinolines as well as benzylamines.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Dongdong Chen
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Yangjian Cheng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
8
|
Tian Y, Bu X, Wang L, E J, Shi L, Tian H, Yang X, Fu H, Zhao Z. Visible Light-Driven Flexible Synthesis of α-Alkylated Glycine Derivatives Catalyzed by Reusable Covalent Organic Frameworks. J Org Chem 2024; 89:1657-1668. [PMID: 38241608 DOI: 10.1021/acs.joc.3c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Herein, we report a heterogeneous visible light-driven preparation of α-alkylated glycine derivatives. This approach employed a β-ketoenamine-linked covalent organic framework (2D-COF-4) as the heterogeneous photocatalyst and N-hydroxy phthalimide (NHPI) esters as the alkyl radical sources. Numerous glycine derivatives, including dipeptides, were precisely and efficiently alkylated under visible light-driven reaction conditions. Based on the excellent photoactivity and organic reaction compatibility of 2D-COF-4, this alkylation could proceed flexibly in a green solvent (ethanol) without any other additives. The photocatalyst and phthalimide were fruitfully recycled with a simple workup procedure, revealing a high ecoscale value and low environmental factor (E-factor).
Collapse
Affiliation(s)
- Yao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Junnan E
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Liangliang Shi
- Tianjin Lisheng Pharmaceutical Co., Ltd., Tianjin 300385, P. R. China
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin300385, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
9
|
Tan Y, Xiang H, Jin J, He X, Li S, Ye Y. Oxidation/Alkylation of Amino Acids with α-Bromo Carbonyls Catalyzed by Copper and Quick Access to HDAC Inhibitor. J Org Chem 2023; 88:17398-17408. [PMID: 38037667 DOI: 10.1021/acs.joc.3c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A facile and efficient method was reported for Cu-catalyzed selective α-alkylation processes of amino acids/peptides and α-bromo esters/ketones through a radical-radical coupling pathway. The reaction displays an excellent functional group tolerance and broad substrate scope, allowing access to desired products in moderate to excellent yields. Notably, this method is distinguished by site-specificity and exhibits total selectivity for aryl glycine motifs over other amino acid units. Furthermore, the practicality of this strategy is certified by the efficient synthesis of the novel SAHA phenylalanine-containing analogue (SPACA).
Collapse
Affiliation(s)
- Yuqiong Tan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Jiayan Jin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Xingrui He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
10
|
Wang S, Ye Y, Shen H, Liu J, Liu Z, Jiang Z, Lei J, Zhang Y. Visible-light induced C(sp 3)-H arylation of glycine derivatives by cerium catalysis. Org Biomol Chem 2023; 21:8364-8371. [PMID: 37815482 DOI: 10.1039/d3ob01458d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A Ce(III)-catalyzed, visible-light induced aerobic oxidative dehydrogenative coupling reaction between glycine derivatives and electron-rich arenes is disclosed. The protocol proceeds efficiently under mild conditions, providing an efficient method for the rapid synthesis of α-arylglycine derivatives without the need for an external photosensitizer and additional oxidant. Moreover, this protocol could be performed on a 5 mmol scale, without obvious reduction of the efficiency.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Yanjie Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Hailong Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Jiyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Zhao Liu
- First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhigen Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
11
|
Wang S, Gao Y, Hu Y, Zhou J, Chen Z, Liu Z, Zhang Y. Direct annulation between glycine derivatives and thiiranes through photoredox/iron cooperative catalysis. Chem Commun (Camb) 2023; 59:12783-12786. [PMID: 37815520 DOI: 10.1039/d3cc04580c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A visible-light-induced aerobic oxidative [2+3] cycloaddition reaction between glycine derivatives and thiiranes has been disclosed, which provides an efficient and atom-economical strategy for the rapid synthesis of thiazolidine-2-carboxylic acid derivatives and the post-modification of glycine-derived dipeptides under mild conditions with good yield and high diastereoselectivities. A preliminary mechanistic study favors a pathway involving a cooperative photoredox catalysis and iron catalysis.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yuan Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Jintao Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhidang Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhao Liu
- First Hospital of Lanzhou University, Lanzhou, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
12
|
Li F, Xu Y, Xu Y, Xie H, Wu J, Wang C, Li Z, Wang Z, Wang L. Engineering of Dual-Function Vitreoscilla Hemoglobin: A One-Pot Strategy for the Synthesis of Unnatural α-Amino Acids. Org Lett 2023; 25:7115-7119. [PMID: 37737085 DOI: 10.1021/acs.orglett.3c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Despite a well-developed and growing body of work on the directed evolution of hemoproteins, the potential of hemoproteins to catalyze non-natural reactions remains underexplored. This paper reports a new biocatalytic strategy for the one-pot synthesis of unnatural α-amino acids. Engineered variants of dual-function Vitreoscilla hemoglobin were found to efficiently catalyze N-H insertion and C-H sp3 alkylation, providing moderate to excellent yields (57%-95%) of unnatural α-amino acid derivatives and turnover numbers (1425-2375).
Collapse
Affiliation(s)
- Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Yuelin Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| |
Collapse
|
13
|
Wang C, Qi R, Wang R, Xu Z. Photoinduced C(sp 3)-H Functionalization of Glycine Derivatives: Preparation of Unnatural α-Amino Acids and Late-Stage Modification of Peptides. Acc Chem Res 2023. [PMID: 37467427 DOI: 10.1021/acs.accounts.3c00260] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
ConspectusPeptides are essential components of living systems and contribute to critical biological processes, such as cell proliferation, immune defense, tumor formation, and differentiation. Therefore, peptides have attracted considerable attention as targets for the development of therapeutic products. The incorporation of unnatural amino acid residues into peptides can considerably impact peptide immunogenicity, toxicity, side effects, water solubility, action duration, and distribution and enhance the peptides' druggability. Typically, the direct modification of natural amino acids is a practical and effective approach for promptly obtaining unnatural amino acids. However, selective functionalization of multiple C(sp3)-H bonds with comparable chemical reactivities in the peptide side chains remains a formidable challenge. Furthermore, chemical modifications aimed at highly reactive (nucleophilic and aromatic) groups on peptide side chains can interfere with the biological activity of peptides.In recent years, the rapid advancement of photoinduced radical reactions has made photoredox radical-radical cross-coupling a practical approach for constructing C(sp3)-C(sp3) bonds under mild conditions. Glycine, a naturally occurring amino acid and the fundamental skeleton of all α-amino acids, provides a basis for the alkylated modification of its own α-C(sp3)-H bond under mild conditions. This Account describes our recent research endeavors for systematically investigating the photocatalytic α-C(sp3)-H alkylation of glycine derivatives via radical-radical coupling between N-aryl glycinate-derived radicals and various alkyl radicals. In 2018, we disclosed the photoinduced Cu-catalyzed decarboxylative α-C(sp3)-H alkylation of glycine derivatives. Subsequently, we developed a catalyst-free method for alkylating glycine derivatives and glycine residues in peptides via electron donor-acceptor (EDA)-complex-promoted single electron transfer. Moreover, we developed a photoinduced method for the radical alkylation of N-aryl glycinate α-C(sp3)-H bonds using unactivated alkyl chlorides (iodides) under photocatalyst-free conditions. Notably, by building on racemic alkylations of glycine derivatives and glycine-residue-containing peptides, we recently stereoselectively alkylated the N-aryl glycinate α-C(sp3)-H bond using a dual-functional Cu catalyst generated in situ for synthesizing a series of unnatural chiral α-amino and C-glycoamino acids.We have developed a series of methods for synthesizing unnatural amino acids through the α-C(sp3)-H alkylation of glycine derivatives using photoredox-promoted radical coupling as a key strategy. These methods are efficient and versatile and can be used for the late-stage modification of peptides in various contexts. Our work builds on the fundamental importance of glycine as the basic scaffold of all α-amino acids and highlights the potential of radical-based chemistry for developing chemical transformations in peptide synthesis. These findings have broad implications for chemical biology and may open doors for discovering peptide drugs and developing therapeutics.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou 730000, China
| |
Collapse
|
14
|
Wang S, Ye Y, Hu Y, Meng X, Liu Z, Liu J, Chen K, Zhang Z, Zhang Y. Visible-light-induced C sp3-H functionalization of glycine derivatives by cerium catalysis. Chem Commun (Camb) 2023; 59:2628-2631. [PMID: 36762590 DOI: 10.1039/d2cc07071e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A Ce(III)-catalyzed, visible-light-induced aerobic oxidative dehydrogenative coupling/aromatization reaction between glycine derivatives and alkenes has been developed, which provides an efficient approach for the synthesis of quinoline derivatives and post-modification of oligopeptides containing glycine residues under mild conditions without the need for external photosensitizers.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yanjie Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Xu Meng
- First Hospital of Lanzhou University, Lanzhou University, China
| | - Zhao Liu
- First Hospital of Lanzhou University, Lanzhou University, China
| | - Jiyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Kuan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhengze Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
15
|
Visible-light-induced controllable α-chlorination of nafimidone derivatives through LMCT excitation of CuCl2. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Wang J, Ye Y, Sang T, Zhou C, Bao X, Yuan Y, Huo C. C(sp 3)-H/C(sp 3)-H Dehydrogenative Radical Coupling of Glycine Derivatives. Org Lett 2022; 24:7577-7582. [PMID: 36214657 DOI: 10.1021/acs.orglett.2c02951] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a general C(sp3)-H/C(sp3)-H dehydrogenative coupling strategy for the preparation of various natural or unnatural amino acids from readily available glycine derivatives and hydrocarbons through a combination of SET and HAT process.
Collapse
Affiliation(s)
- Jiayuan Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Tongzhi Sang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Chenxing Zhou
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
17
|
Babu MH, Sim J. Radical‐Mediated C‐H Alkylation of Glycine Derivatives: A Straightforward Strategy for Diverse α‐Unnatural Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madala Hari Babu
- Chungnam National University College of Pharmacy KOREA, REPUBLIC OF
| | - Jaehoon Sim
- Chungnam National University College of Pharmacy College of Pharmacy 99 Daehak-ro, Yuseong-guW6 College of Pharmacy 34134 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
18
|
Jiang C, Sha X, Ni C, Qin W, Zhu X, Wang S, Li X, Lu H. Visible-Light-Promoted Cross Dehydrogenative/Decarboxylative Coupling Cascades of Glycine Ester Derivatives and β-Keto Acids. J Org Chem 2022; 87:8744-8751. [PMID: 35708260 DOI: 10.1021/acs.joc.2c00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced dehydrogenative/decarboxylative coupling reaction of arylglycine derivatives and β-keto acids is described. This photocatalyst- and additive-free protocol can be applied in the efficient synthesis of γ-keto glycine derivatives under ambient conditions. Further uses of this methodology and a plausible mechanism are also demonstrated.
Collapse
Affiliation(s)
- Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuefei Sha
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Cheng Ni
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Wei Qin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuejie Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Shan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| |
Collapse
|
19
|
Ma Q, Zhang S, Yuan Y, Ding H, Li Y, Sun Z, Yuan Y, Jia X. Multifunctionalization of sp3 C‐H Bond of Tetrahydroisoquinolines through C‐H Activation Relay (CHAR) Using α‐Cyanotetrahydroisoquinolines as the Starting Materials. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiyuan Ma
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Shuwei Zhang
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuan Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Han Ding
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuemei Li
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Zheng Sun
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yu Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Xiaodong Jia
- Yangzhou University School of Chemistry and Chemical Engineering, Yangzhou University 180 Siwangting Road 225002 Yangzhou CHINA
| |
Collapse
|
20
|
Young HA, Proulx C. On-resin Cα-functionalization of N-arylglycinyl peptides with boronic acids. Org Biomol Chem 2022; 20:6245-6249. [PMID: 35616496 DOI: 10.1039/d2ob00524g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A late-stage α-C-H functionalization reaction of resin-bound, electron-rich N-aryl peptides with boronic acid nucleophiles under mild conditions is reported. We explore the impact of the N-arylglycinyl peptide structure on reactivity, and present a scope of the optimized reaction where both the peptide sequence and nature of boronic acid derivatives are varied.
Collapse
Affiliation(s)
- Hailey A Young
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
21
|
Shang X, Liu ZQ. Advances in free-radical alkylation and arylation with organoboronic acids. Org Biomol Chem 2022; 20:4074-4080. [PMID: 35535704 DOI: 10.1039/d2ob00532h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organoboronic acids act as carbon-centered radical precursors that are widely utilized to construct diverse C-C bonds. This review summarizes the advances in this field. The content is divided into four parts according to the different categories of coupling partners with organoboronic acids. The reaction conditions as well as the mechanisms are demonstrated in each part.
Collapse
Affiliation(s)
- Xiaojie Shang
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu 730070, P. R. China.
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
22
|
Pillitteri S, Ranjan P, Van der Eycken EV, Sharma UK. Uncovering the Potential of Boronic Acid and Derivatives as Radical Source in Photo(electro)chemical Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Prabhat Ranjan
- Aachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
23
|
Hu Y, Liu X, Ren Z, Hu B, Li J. Csp3‒H Monofluoroalkenylation via Stereoselective C‒F Bond Cleavage. Chem Commun (Camb) 2022; 58:2734-2737. [DOI: 10.1039/d1cc06247f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical nickel- and photoredox-catalyzed Csp3‒H monofluoroalkenylation through chelation-assisted Csp2‒F bond cleavage of gem-difluoroalkenes has been developed, which provides an expedient access to the synthesis of tetrasubstituted fluoroalkenes with complete...
Collapse
|
24
|
Zhou SY, Zhang D, Liu XJ, Qin JH, Fu ZL, Li SL, Cai FJ, Li Y, Li JH. Visible-Light-Driven Photoredox-Catalyzed C(sp3)-C(sp3) Cross-Coupling of N-arylamines with Cycloketone Oxime Esters. Org Chem Front 2022. [DOI: 10.1039/d2qo00128d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoredox-catalyzed C(sp3)-C(sp3) cross-coupling between N-arylamines and cycloketone oxime esters under mild conditions has been accomplished. The redox-neutral reaction proceeds good functional group tolerance and excellent regioselectivity without any...
Collapse
|
25
|
Gugkaeva ZT, Smol'yakov AF, Maleev VI, Larionov VA. A general asymmetric synthesis of artificial aliphatic and perfluoroalkylated α-amino acids by Luche's cross-electrophile coupling reaction. Org Biomol Chem 2021; 19:5327-5332. [PMID: 34042928 DOI: 10.1039/d1ob00805f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aliphatic artificial α-amino acids (α-AAs) have attracted great interest in biochemistry and pharmacy. In this context, we developed a promising practical protocol for the asymmetric synthesis of these α-AAs through the selective and efficient intermolecular cross-electrophile coupling of Belokon's chiral dehydroalanine Ni(ii) complex with different alkyl and perfluoroalkyl iodides mediated by a dual Zn/Cu system. The reaction afforded diastereomeric complexes with dr up to 21.3 : 1 in 24-95% yields (19 examples). Exemplarily, three enantiomerically pure aliphatic α-AAs were obtained through acidic decomposition of (S,S)-diastereomers of Ni(ii) complexes. Importantly, the chiral auxiliary ligand (S)-BPB ((S)-2-(N-benzylprolyl)aminobenzophenone) was easily recycled by simple filtration after acidic complex decomposition and reused for the synthesis of the initial dehydroalanine Ni(ii) complex.
Collapse
Affiliation(s)
- Zalina T Gugkaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation
| | - Victor I Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
26
|
Yang L, Qiu Z, Wu J, Zhao J, Shen T, Huang X, Liu ZQ. Molecular Oxygen-Mediated Radical Alkylation of C(sp 3)-H Bonds with Boronic Acids. Org Lett 2021; 23:3207-3210. [PMID: 33821663 DOI: 10.1021/acs.orglett.1c00948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A direct and site-specific alkylation of (sp3)C-H bond with aliphatic boronic acid was achieved. By simply heating glycinates and amines together with alkylboronic acids under an oxygen atmosphere, a variety of unnatural α-amino acids and peptides could be obtained in good yields.
Collapse
Affiliation(s)
- Le Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhihong Qiu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jintao Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuan Huang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|