1
|
Zhang E, Wu YC, Shao H, Klimavicius V, Zhang H, Taberna PL, Grothe J, Buntkowsky G, Xu F, Simon P, Kaskel S. Unraveling the Capacitive Charge Storage Mechanism of Nitrogen-Doped Porous Carbons by EQCM and ssNMR. J Am Chem Soc 2022; 144:14217-14225. [PMID: 35914237 DOI: 10.1021/jacs.2c04841] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fundamental understanding of ion electroadsorption processes in porous electrodes on a molecular level provides important guidelines for next-generation energy storage devices like electric double layer capacitors (EDLCs). Porous carbons functionalized by heteroatoms show enhanced capacitive performance, but the underlying mechanism is still elusive, due to the lack of reliable tools to precisely identify multiple N species and establish clear structure property relations. Here, we use advanced analytical techniques such as low-temperature solid-state NMR (ssNMR) and electrochemical quartz crystal microbalance (EQCM) to relate the complex nitrogen functionalities to the charging mechanisms and capacitive performance. For the first time, it is demonstrated at a molecular level that N-doping strongly influences the electroadsorption mechanism in EDLCs. Without N-doping, anion (SO42-) adsorption-desorption dominates the charging mechanism, whereas after doping, Li+ electroadsorption plays a key role. With the help of EQCM, it is demonstrated that SO42- is strongly immobilized on the N-doped surface, leaving Li+ as the main charge carrier. The smaller size and higher concentration of Li+ compared to SO42- benefit a higher capacitance. Amine/amide N is responsible for high capacitance, but surprisingly the pyridinic, pyrrolic, and graphitic N groups have no significant influence. 2D 1H-15N NMR spectroscopy indicates that the conversion from pyridinium to pyrrolic N gives rise to a slightly decreased capacitance. This work not only demonstrates ssNMR as a powerful tool for surface chemistry characterization of electrode materials but also uncovers the related charging mechanism by EQCM, paving the way toward a comprehensive picture of EDLC chemistry.
Collapse
Affiliation(s)
- En Zhang
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Yih-Chyng Wu
- Université Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens 80039, France
| | - Hui Shao
- Université Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens 80039, France
| | - Vytautas Klimavicius
- Institute of Chemical Physics, Vilnius University, Sauletekio av. 3, Vilnius LT-10257, Lithuania.,Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Hanyue Zhang
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | | | - Julia Grothe
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Fei Xu
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Patrice Simon
- Université Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens 80039, France
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| |
Collapse
|