1
|
Kamlar M, Putatunda S, Císařová I, Veselý J. Enantioselective Synthesis of Spirocyclic Isoxazolones Using a Conia-Ene Type Reaction. J Org Chem 2025; 90:3615-3627. [PMID: 40042076 PMCID: PMC11915384 DOI: 10.1021/acs.joc.4c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Stereoselective synthesis of spirocyclic compounds containing heterocyclic motifs represents a formidable challenge in enantioselective synthesis. Here, we present a cascade reaction between α,β-unsaturated aldehydes and isoxazolones under synergistic catalysis of a chiral secondary amine and a palladium(0) catalyst. This strategy allows access to chiral spiroisoxazolone derivatives with a large substrate scope tolerance and high levels of diastereoselectivity (dr up to 20:1) and enantioselectivity (up to 99% ee). Furthermore, the utility of this methodology is showcased by the transformation of chiral spiroisoxazolones into structurally attractive and enantiomerically enriched cyclopentene carboxylic acids with two stereogenic centers.
Collapse
Affiliation(s)
- Martin Kamlar
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Praha 2, Czech Republic
| | - Salil Putatunda
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Praha 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Praha 2, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Praha 2, Czech Republic
| |
Collapse
|
2
|
Liu YQ, Wu Y, Li B, Tang X, Chen C. Recent advances in the organocatalytic synthesis of chiral C3-spiro-cyclopentaneoxindoles. Org Biomol Chem 2025; 23:757-773. [PMID: 39629731 DOI: 10.1039/d4ob01773k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Although there have been various reviews on the asymmetric construction of C3-spirooxindoles, there is a scarcity of reviews focusing on the asymmetric organocatalytic synthesis of C3-spiro-cyclopentaneoxindole derivatives. This particular scaffold has garnered significant attention from synthetic chemists due to its relevance in medicinal chemistry. In this review, we provide an overview of recent advancements in the asymmetric organocatalytic synthesis of various C3-spiro-cyclopentaneoxindoles using organic catalysts. The work is divided into sections according to the type of catalysis, including covalent catalysis (amine catalysis and N-heterocyclic carbene catalysis) and non-covalent catalysis (chiral phosphoric acid catalysis, hydrogen bond catalysis, and phase transfer catalysis). Furthermore, we discuss existing challenges and future directions within this field. It is our belief that this review will serve as an informative resource for researchers engaged in synthesizing C3-spiro-cyclopentaneoxindoles and inspire further advancements in this area.
Collapse
Affiliation(s)
- Yan-Qing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, P. R. China
| | - Yan Wu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, P. R. China.
| | - Bin Li
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, P. R. China.
| | - Xue Tang
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, P. R. China.
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, P. R. China.
| |
Collapse
|
3
|
Zheng L, Yang YM, Liu ZP, Wang W, Liang WJ, Jiang HL, Yang L, Lin C, Su W, Xiao JA. Palladium-Catalyzed Strain-Enabled [2π + 2σ] Cycloadditions of Vinyl Bicyclo[1.1.0]butanes with Methyleneindolinones. Org Lett 2025; 27:229-234. [PMID: 39723988 DOI: 10.1021/acs.orglett.4c04224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A palladium-catalyzed [2π + 2σ] cycloaddition of vinyl bicyclo[1.1.0]butanes with methyleneindolinones has been developed. The reaction enables the construction of spirobicyclo[2.1.1]hexanes bearing an all-carbon quaternary center in moderate to good yields with excellent diastereoselectivities. This method features a broad substrate scope with good functional group compatibility. The practical utility of this protocol was further demonstrated by gram-scale synthesis and postsynthetic transformations of desired product.
Collapse
Affiliation(s)
- Lan Zheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Yu-Min Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Zhi-Ping Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Wei Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Wen-Jie Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Hai-Lian Jiang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Liu Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| |
Collapse
|
4
|
Wang W, Xiao JA, Zheng L, Liang WJ, Yang L, Huang XX, Lin C, Chen K, Su W, Yang H. Structure-Dependent, Switchable Alder-Ene/[2π + 2σ] Cycloadditions of Vinyl Bicyclo[1.1.0]butanes with α-Ketoesters Enabled by Palladium Catalysis. Org Lett 2024; 26:10645-10650. [PMID: 39628401 DOI: 10.1021/acs.orglett.4c04251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A structure-dependent, palladium-catalyzed switchable alder-ene/[2π + 2σ] cycloaddition of VBCBs with α-ketoesters has been reported. A variety of cyclobutenes and 2-oxabicyclo[2.1.1]hexanes have been efficiently achieved in good to excellent yields through strain-release-driven alder-ene reactions and [2π + 2σ] cycloadditions, respectively. The potential of this method is illustrated by the scale-up reaction and diverse postsynthetic transformations of the obtained cyclic scaffolds. Additionally, the reaction mechanism and origins of the chemoselectivity have been probed by computational studies.
Collapse
Affiliation(s)
- Wei Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Lan Zheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Wen-Jie Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Liu Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Xiao-Xiang Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
5
|
Nanda SK. Asymmetric cascades of the π-allyl complex: a journey from transition-metal catalysis to metallaphotocatalysis. Chem Commun (Camb) 2023; 59:11298-11319. [PMID: 37670574 DOI: 10.1039/d3cc03010e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The enantioselective catalytic cascade involving Tsuji-Trost allylation has provided a viable strategy for the construction of multiple asymmetric C-C and C-X centres and numerous methods have been developed around it for the synthesis of various vital scaffolds. The synthetic utility of this strategy was enhanced by replacing the customary allyl acetates with ethylene diacetates/dicarbonates, vinyl epoxides, vinyl oxetanes, vinyl ethylene carbonates, vinyl cyclopropanes, enynes, and dienes using transition-metal catalysis. One more milestone was achieved when metallaphotocatalysis provided the necessary platform for these cascades by using a cheaper metal. This review will provide a summary of these enantioselective catalytic cascades from 2015.
Collapse
Affiliation(s)
- Santosh Kumar Nanda
- Department of Chemistry, School of Applied Science, Centurion University, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
6
|
Ma HJ, Gao K, Wang XL, Zeng JY, Yang Y, Jiang Y. AlCl 3-mediated ring-opening reactions of indoline-2-thiones with acyl cyclopropanes, bi-cyclopropanes and spirocyclic cyclopropanes. Org Biomol Chem 2023; 21:6312-6316. [PMID: 37493459 DOI: 10.1039/d3ob00909b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
AlCl3-mediated nucleophilic ring-opening reactions of indoline-2-thiones with various acyl cyclopropanes, bi-cyclopropanes and spirocyclic cyclopropanes were investigated. A series of ketones functionalized with indolylthio groups were synthesized in yields ranging from moderate to good. Moreover, chemical transformations of 4-indolylthio butan-1-ones to dihydro-2H-thiepino[2,3-b]indoles and sulfone were carried out to further expand both synthetic utility and structural complexity.
Collapse
Affiliation(s)
- Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Ke Gao
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Xue-Long Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Jun-Yi Zeng
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
7
|
Debnath B, Sarkar T, Karjee P, Purkayastha SK, Guha AK, Punniyamurthy T. Palladium-Catalyzed Annulative Coupling of Spirovinylcyclopropyl Oxindoles with p-Quinone Methides. J Org Chem 2023. [PMID: 37437136 DOI: 10.1021/acs.joc.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Pd-catalyzed annulative coupling of spirovinylcyclopropyl oxindoles with p-quinone methides has been accomplished via cascade carbon-carbon bond formation to afford bis-spirooxindole scaffolds. The mild reaction conditions, diastereoselectivity, functional group diversity, post-synthetic transformations, and mechanistic studies using DFT calculations are the important practical features.
Collapse
Affiliation(s)
- Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Guwahati 781001, India
| | | |
Collapse
|
8
|
Kamlar M, Urban M, Veselý J. Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transition-Metal Catalysis. CHEM REC 2023:e202200284. [PMID: 36703545 DOI: 10.1002/tcr.202200284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last ten years, the combination of organocatalysis with transition metal (TM) catalysis has become one of the most important toolboxes used for synthesizing optically pure compounds containing chiral quaternary centers, including spiro heterocyclic molecules. The dominant method in the enantioselective synthesis of spiro heterocyclic compounds based on synergistic catalysis includes chiral aminocatalysis and NHC catalysis, as already established covalent organocatalytic strategies. Another area of organocatalysis widely combined with TM catalysis producing enantiomerically enriched spiro heterocyclic compounds is non-covalent catalysis, dominated by chiral phosphoric acids, thiourea, and squaramide derivatives. This review article aims to summarize enantioselective methods used for constructing spirocyclic heterocycles based on a combination of organocatalysis and transition metal catalysis.
Collapse
Affiliation(s)
- Martin Kamlar
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| | - Michal Urban
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| | - Jan Veselý
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| |
Collapse
|
9
|
Wang KK, Li YL, Chen R, Wang ZY, Li NB, Zhang LL, Gu S. Substrate-Controlled Regioselectivity Switchable [3 + 2] Annulations To Access Spirooxindole Skeletons. J Org Chem 2022; 87:8158-8169. [PMID: 35675122 DOI: 10.1021/acs.joc.2c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The additive-free [3 + 2] annulation from isatins, amino acids with 2-styrylbenzoxazoles, was described, providing a series of functional and structurally complex 3,3'-pyrrolidinyl-spirooxindole derivatives containing four contiguous and two quaternary stereogenic centers in high yields (up to 95%) and excellent diastereoselectivities (up to >25:1 dr). Interestingly, the reaction exhibits switchable regioselectivity depending on the substrate of amino acids. With proline or thioproline as the substrate, the reaction afforded α-regioselective spirooxindole skeletons. In contrast, when piperidine acid is the substrate, the reaction provided γ-regioselective spirooxindole skeletons.
Collapse
Affiliation(s)
- Kai-Kai Wang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Yan-Li Li
- Medical College, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Rongxiang Chen
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Zhan-Yong Wang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Ning-Bo Li
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Lu Lu Zhang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Shan Gu
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| |
Collapse
|
10
|
Zhou JW, Chen BH, Zhang FH, Xue J, He XH, Peng C, Huang W, Zhao Q. Enantioselective Synthesis of Spirocyclopentane Oxindoles Bearing Five Consecutive Stereocenters via Secondary Amine‐Catalyzed [3+2] Cycloaddition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jing-Wei Zhou
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | - Ben-Hong Chen
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | - Feng-Hua Zhang
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine School of Basic Medical Sciences CHINA
| | - Jing Xue
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | - Xiang-Hong He
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | - Wei Huang
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | | |
Collapse
|
11
|
Dai QS, Li JL, Wang QW, Yang SL, Tao YM, He MH, Li QZ, Han B, Zhang X. Sulphur ylide-mediated cyclopropanation and subsequent spirocyclopropane rearrangement reactions. Org Biomol Chem 2022; 20:3486-3490. [PMID: 35388864 DOI: 10.1039/d2ob00466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient construction of cyclopropyl spiroindoline skeletons and the exploration of related follow-up synthetic transformations have elicited considerable interest amongst members of the chemistry community. Here, we describe a formal (2 + 1) annulation and three-component (1 + 1 + 1) cascade cyclisation via sulphur ylide cyclopropanation under mild conditions. The spiro-cyclopropyl iminoindoline moiety can be readily transformed into another medicinally interesting pyrrolo[3,4-c]quinoline framework through a novel rearrangement process.
Collapse
Affiliation(s)
- Qing-Song Dai
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Long Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Qi-Wei Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Si-Lin Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Ying-Mao Tao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Mei-Hao He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Qing-Zhu Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. .,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Xiang Zhang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
12
|
Zhang X, Zhang C, Jiang B, Gao Y, Xu X, Miao Z. Ligand-Controlled Palladium-Catalyzed Asymmetric [4+3] and [2+3] Annulation Reactions of Spirovinylcyclopropyl Oxindoles with o-Quinone Methides. Org Lett 2022; 24:3097-3101. [PMID: 35436115 DOI: 10.1021/acs.orglett.2c01137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report regiodivergent ligand-controlled palladium-catalyzed asymmetric cycloaddition reactions between spirovinylcyclopropyl oxindoles and o-quinone methides. Specifically, by using the chiral P,P-ligand Segphos (L5), we obtained various spirooxindole-3,4-benzo[b]oxepanes in moderate to good yields with excellent enantioselectivities via [4+3] cycloaddition reactions. In contrast, reactions involving Trost's ligand (L7) showed different regio- and stereoselectivities, affording bispirooxindole heterocyclic compounds in good yields via [2+3] cycloaddition reactions.
Collapse
Affiliation(s)
- Xiyuan Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Cong Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Jiang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yanfeng Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Xiufang Xu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiwei Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
13
|
Xiao JA, Peng H, Liang JS, Meng RF, Su W, Xiao Q, Yang H. Gold/scandium bimetallic relay catalysis of formal [5+2]- and [4+2]-annulations: access to tetracyclic indole scaffolds. Chem Commun (Camb) 2021; 57:13369-13372. [PMID: 34821245 DOI: 10.1039/d1cc05658a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regiodivergent formal [5+2]- and [4+2]-annulation reactions of indole derivatives with 2-(2-alkynyl)aryl cyclopropane-1,1-diesters (ACPs) have been developed. A series of tetracyclic indole derivatives were delivered in a 77% average yield with excellent regioselectivities enabled by Au(I)/Sc(III) bimetallic relay catalysis. A gram-scale reaction and further transformation of the resulting tetracyclic indoles demonstrated the practical utility of this protocol. Moreover, the photophysical properties of the obtained multicyclic compounds were also investigated.
Collapse
Affiliation(s)
- Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Hai Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jin-Shao Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Ru-Fang Meng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|