1
|
Yu YM, Li XJ, Bu FZ, Zhao ZL, Wu ZY, Li YT. Drug-Drug Cocrystal Alloy and Nanoformulation of Cytarabine: Optimized Biopharmaceutical Property and Synergistic Antitumor Efficacy. Mol Pharm 2024; 21:5716-5727. [PMID: 39392428 DOI: 10.1021/acs.molpharmaceut.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An integrated strategy by combining cocrystallization with nanotechnology is developed to optimize in vitro/vivo performances of marine antitumor drug cytarabine (ARA) and further obtain innovative insights into the exploitation of cocrystal alloy nanoformulation. Therein, the optimization of properties and synergistic effects of ARA mainly depends on assembling with uracil (U) and antitumor drug 5-fluorouracil (FU) into the same crystal by cocrystallization technology, while the long-term efficacy is primarily maintained by playing the superiority of nanotechnology. Along this line, the first cocrystal alloy of ARA, viz., ARA-FU-U (0.6:0.4), is successfully obtained and then transformed into a nanocrystal. Single-crystal X-ray diffraction analysis demonstrates that this cocrystal alloy consists of two isomorphic cocrystals of ARA, namely, ARA-FU and ARA-U, in 0.6:0.4 ratio. An R22(8) hydrogen-bonding cyclic system formed by a cytosine fragment of ARA with U or FU can protect and stabilize the amine group on ARA, laying the foundation for regulating its properties. The in vitro/in vivo properties of the cocrystal alloy and its nanocrystals are investigated by theoretical and experimental means. It reveals that both the alloy and nanocrystal can improve physicochemical properties and promote drug absorption, thus bringing to optimized pharmacokinetic behaviors. The nanocrystal produces superior effects than the alloy that helps to extend therapeutic time and action. Particularly, relative to the corresponding binary cocrystal, the synergistic antitumor activity of ARA and FU in the cocrystal alloy is heightened obviously. It may be that U contributes to reducing the degradation of FU, specifically increasing its concentration in tumors to enhance the synergistic effects of FU and ARA. These findings provide new thoughts for the application of cocrystal alloys in the marine drug field and break fresh ground for cocrystal alloy formulations to optimize drug properties.
Collapse
Affiliation(s)
- Yue-Ming Yu
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science, Qingdao, Shandong 266234, PR China
- School of Medicine, Linyi University, Linyi, Shandong 276000, PR China
| | - Xue-Jie Li
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266071, PR China
| | - Fan-Zhi Bu
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science, Qingdao, Shandong 266234, PR China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Zhi-Long Zhao
- School of Medicine, Linyi University, Linyi, Shandong 276000, PR China
| | - Zhi-Yong Wu
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science, Qingdao, Shandong 266234, PR China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yan-Tuan Li
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science, Qingdao, Shandong 266234, PR China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China
| |
Collapse
|
2
|
Voronin AP, Surov AO, Churakov AV, Vener MV. Supramolecular Organization in Salts of Riluzole with Dihydroxybenzoic Acids—The Key Role of the Mutual Arrangement of OH Groups. Pharmaceutics 2023; 15:pharmaceutics15030878. [PMID: 36986739 PMCID: PMC10051219 DOI: 10.3390/pharmaceutics15030878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Intermolecular interactions, in particular hydrogen bonds, play a key role in crystal engineering. The ability to form hydrogen bonds of various types and strengths causes competition between supramolecular synthons in pharmaceutical multicomponent crystals. In this work, we investigate the influence of positional isomerism on the packing arrangements and the network of hydrogen bonds in multicomponent crystals of the drug riluzole with hydroxyl derivatives of salicylic acid. The supramolecular organization of the riluzole salt containing 2,6-dihydroxybenzoic acid differs from that of the solid forms with 2,4- and 2,5-dihydroxybenzoic acids. Because the second OH group is not at position 6 in the latter crystals, intermolecular charge-assisted hydrogen bonds are formed. According to periodic DFT calculations, the enthalpy of these H-bonds exceeds 30 kJ·mol−1. The positional isomerism appears to have little effect on the enthalpy of the primary supramolecular synthon (65–70 kJ·mol−1), but it does result in the formation of a two-dimensional network of hydrogen bonds and an increase in the overall lattice energy. According to the results of the present study, 2,6-dihydroxybenzoic acid can be treated as a promising counterion for the design of pharmaceutical multicomponent crystals.
Collapse
Affiliation(s)
| | - Artem O. Surov
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - Andrei V. Churakov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, 119991 Moscow, Russia
| | - Mikhail V. Vener
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
3
|
Zeng W, Wang X, Zhou T, Zhang Y. Crystal Structure, Photophysical Study, Hirshfeld Surface Analysis, and Nonlinear Optical Properties of a New Hydroxyphenylamino Meldrum's Acid Derivative. Molecules 2023; 28:molecules28052181. [PMID: 36903427 PMCID: PMC10004585 DOI: 10.3390/molecules28052181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The structural, photophysical, and vibrational properties of a new hydroxyphenylamino Meldrum's acid derivative, 3-((2-hydroxyphenylamino)methylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione (HMD), were studied. The comparison of experimental and theoretical vibrational spectra can help understand basic vibration patterns and provides a better interpretation of IR spectra. The UV-Vis spectrum of HMD was computed using density functional theory (DFT)/B3LYP/6-311 G(d,p) basis set in the gas state, and the maximum wavelength was in accord with the experimental data. The molecular electrostatic potential (MEP) and Hirshfeld surface analysis confirmed O(1)-H(1A)···O(2) intermolecular hydrogen bonds in the HMD molecule. The natural bond orbital (NBO) analysis provided delocalizing interactions between π→π* orbitals and n→σ*/π* charge transfer transitions. Finally, the thermal gravimetric (TG)/differential scanning calorimeter (DSC) and the non-linear optical (NLO) properties of HMD were also reported.
Collapse
Affiliation(s)
- Wulan Zeng
- Department of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
- Correspondence:
| | - Xia Wang
- Department of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Tao Zhou
- Department of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yunju Zhang
- Key Laboratory of Photoinduced Functional Materials, School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| |
Collapse
|
4
|
Study on crystal structure, spectroscopic, thermodynamic properties and Hirshfeld surfaces of a new spiro compound containing thiourea group C17H18N2O4S. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Yu YM, Bu FZ, Meng SS, Yan CW, Wu ZY, Li YT. The first marine dual-drug cocrystal of cytarabine with 5-fluorouracil having synergistic antitumor effects shows superior biopharmaceutical peculiarities by oral administration. Int J Pharm 2022; 629:122386. [DOI: 10.1016/j.ijpharm.2022.122386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/20/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
6
|
Garg U, Azim Y. Experimental and computational analyses of the cocrystal of Tetrahydrofuran-2,3,4,5-tetracarboxylic acid and urea. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
New Co-Crystals/Salts of Gallic Acid and Substituted Pyridines: An Effect of Ortho-Substituents on the Formation of an Acid–Pyridine Heterosynthon. CRYSTALS 2022. [DOI: 10.3390/cryst12040497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Co-crystallization of gallic acid with pyridines and their polyaromatic analogue, quinoline, ortho-substituted by various proton-donating groups able to form hydrogen bonds, produced the only reported co-crystal of gallic acid with an ortho-substituted pyridine, 2-hydroxypyridine, as its preferred pyridone-2 tautomer, and four new crystalline products of gallic acid. These co-crystals, or gallate salts depending on the choice of the pyridine-containing compound, as predicted by the pKa rule, were identified by X-ray diffraction to feature the popular acid–pyridine heterosynthon found in most of the two-component systems of gallic acid that lack ortho-substituents in the pyridine-containing compound. This single-point heterosynthon is, however, modified by one or two proton-donating ortho-substituents, which sometimes may transform into the proton acceptors in an adopted tautomer or zwitterion, to produce its two- or other multi-point variants, including a very rare four-point heterosynthon. The hydrogen bonds they form with the gallic acid species in the appropriate co-crystals/salts strongly favors the formation of the acid–pyridine heterosynthon over the acid–acid homosynthon. In the competitive conditions of multi-component systems, such a modification might be used to reduce supramolecular-synthon-based polymorphism to produce new pharmaceuticals and other crystalline materials with designed properties.
Collapse
|
8
|
Lee MJ, Kim JY, Kim P, Lee IS, Mswahili ME, Jeong YS, Choi GJ. Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery. Pharmaceutics 2022; 14:pharmaceutics14020429. [PMID: 35214161 PMCID: PMC8877905 DOI: 10.3390/pharmaceutics14020429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Vonoprazan (VPZ) is the first-in-class potassium-competitive acid blocker (P-CAB), and has many advantages over proton pump inhibitors (PPIs). It is administered as a fumarate salt for the treatment of acid-related diseases, including reflux esophagitis, gastric ulcer, and duodenal ulcer, and for eradication of Helicobacter pylori. To discover novel cocrystals of VPZ, we adopted an artificial neural network (ANN)-based machine learning model as a virtual screening tool that can guide selection of the most promising coformers for VPZ cocrystals. Experimental screening by liquid-assisted grinding (LAG) confirmed that 8 of 19 coformers selected by the ANN model were likely to create new solid forms with VPZ. Structurally similar benzenediols and benzenetriols, i.e., catechol (CAT), resorcinol (RES), hydroquinone (HYQ), and pyrogallol (GAL), were used as coformers to obtain phase pure cocrystals with VPZ by reaction crystallization. We successfully prepared and characterized three novel cocrystals: VPZ–RES, VPZ–CAT, and VPZ–GAL. VPZ–RES had the highest solubility among the novel cocrystals studied here, and was even more soluble than the commercially available fumarate salt of VPZ in solution at pH 6.8. In addition, novel VPZ cocrystals had superior stability in aqueous media than VPZ fumarates, demonstrating their potential for improved pharmaceutical performance.
Collapse
Affiliation(s)
- Min-Jeong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Chungnam, Korea;
| | - Ji-Yoon Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Chungnam, Korea; (J.-Y.K.); (P.K.); (I.-S.L.)
| | - Paul Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Chungnam, Korea; (J.-Y.K.); (P.K.); (I.-S.L.)
| | - In-Seo Lee
- Department of Medical Science, Soonchunhyang University, Asan 31538, Chungnam, Korea; (J.-Y.K.); (P.K.); (I.-S.L.)
| | - Medard E. Mswahili
- Department of ICT Convergence, Soonchunhyang University, Asan 31538, Chungnam, Korea;
| | - Young-Seob Jeong
- Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Korea;
| | - Guang J. Choi
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Chungnam, Korea;
- Department of Medical Science, Soonchunhyang University, Asan 31538, Chungnam, Korea; (J.-Y.K.); (P.K.); (I.-S.L.)
- Correspondence:
| |
Collapse
|
9
|
Kendall T, Stratford S, Patterson AR, Lunt RA, Cruickshank D, Bonnaud T, Scott CD. An industrial perspective on co-crystals: Screening, identification and development of the less utilised solid form in drug discovery and development. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:345-442. [PMID: 34147205 DOI: 10.1016/bs.pmch.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Active pharmaceutical ingredients are commonly marketed as a solid form due to ease of transport, storage and administration. In the design of a drug formulation, the selection of the solid form is incredibly important and is traditionally based on what polymorphs, hydrates or salts are available for that compound. Co-crystals, another potential solid form available, are currently not as readily considered as a viable solid form for the development process. Even though co-crystals are gaining an ever-increasing level of interest within the pharmaceutical community, their acceptance and application is still not as standard as other solid forms such as the ubiquitous pharmaceutical salt and stabilised amorphous formulations. Presented in this chapter is information that would allow for a co-crystal screen to be planned and conducted as well as scaled up using solution and mechanochemistry based methods commonly employed in both the literature and industry. Also presented are methods for identifying the formation of a co-crystal using a variety of analytical techniques as well as the importance of confirming the formation of co-crystals from a legal perspective and demonstrating the legal precedent by looking at co-crystalline products already on the market. The benefits of co-crystals have been well established, and presented in this chapter are a selection of examples which best exemplify their potential. The goal of this chapter is to increase the understanding of co-crystals and how they may be successfully exploited in early stage development.
Collapse
Affiliation(s)
- Thomas Kendall
- Technobis Crystallization Systems, Alkmaar, The Netherlands.
| | - Sam Stratford
- Johnson Matthey, Pharmorphix, Cambridge, United Kingdom
| | | | - Ruth A Lunt
- Johnson Matthey, Pharmorphix, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
10
|
Garg U, Azim Y, Alam M. In acid-aminopyrimidine continuum: experimental and computational studies of furan tetracarboxylate-2-aminopyrimidinium salt. RSC Adv 2021; 11:21463-21474. [PMID: 35478783 PMCID: PMC9034213 DOI: 10.1039/d1ra01714d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Salts and cocrystals are the two important solid forms when a carboxylic acid crystallizes with an aminopyrimidine base such that the extent of proton transfer distinguishes between them. The ΔpKa value (pKa(base) − pKa(acid)) predicts whether the proton transfer will occur or not. However, the ΔpKa range, 0 < ΔpKa < 3, is elusive where the formation of cocrystal or salt cannot be predicted. The current study has been done to obtain a generalization in this elusive range with the Cambridge Structural Database (CSD). Based on the generalization, a novel salt (FTCA)−(2-AP)+ of furantetracarboxylic acid (FTCA) with 2-aminopyrimidine (2-AP) is obtained. The structural confirmation was done by single-crystal X-ray diffraction (SCXRD). Density functional theory (DFT) calculations were performed at the IEF-PCM-B3LYP-D3/6-311G(d,p) level to optimize the geometrical coordinates of salt for frontier molecular orbitals (FMOs) and molecular electrostatic potential (MESP). The geometrical parameters of most of the atoms of the optimized salt structure were comparable with SCXRD data. Additionally, results of other computational methods such as ab initio (Hartree–Fock; HF and second-order-Møller–Plesset perturbation; MP2) and semi-empirical were also compared with experimental results of the salt. Quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), and natural bond orbital (NBO) analyses were done to calculate the strength and nature of non-covalent interactions present in the salt. Furthermore, Hirshfeld surface analysis, interaction energy calculations, and total energy frameworks were performed for qualitative and quantitative estimations of strong and weak intermolecular interactions. Generalization in the elusive ΔpKa range, experimental and computational studies of furan tetracarboxylate-2-aminopyrimidinium salt.![]()
Collapse
Affiliation(s)
- Utsav Garg
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Yasser Azim
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Mahboob Alam
- Division of Chemistry & Biotechnology, Dongguk University 123 Dongdae-ro Gyeongju Republic of Korea
| |
Collapse
|
11
|
Garg U, Azim Y. Challenges and opportunities of pharmaceutical cocrystals: a focused review on non-steroidal anti-inflammatory drugs. RSC Med Chem 2021; 12:705-721. [PMID: 34124670 PMCID: PMC8152597 DOI: 10.1039/d0md00400f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
The focus of the review is to discuss the relevant and essential aspects of pharmaceutical cocrystals in both academia and industry with an emphasis on non-steroidal anti-inflammatory drugs (NSAIDs). Although cocrystals have been prepared for a plethora of drugs, NSAID cocrystals are focused due to their humongous application in different fields of medication such as antipyretic, anti-inflammatory, analgesic, antiplatelet, antitumor, and anti-carcinogenic drugs. The highlights of the review are (a) background of cocrystals and other solid forms of an active pharmaceutical ingredient (API) based on the principles of crystal engineering, (b) why cocrystals are an excellent opportunity in the pharma industry, (c) common methods of preparation of cocrystals from the lab scale to bulk quantity, (d) some latest case studies of NSAIDs which have shown better physicochemical properties for example; mechanical properties (tabletability), hydration, solubility, bioavailability, and permeability, and (e) latest guidelines of the US FDA and EMA opening new opportunities and challenges.
Collapse
Affiliation(s)
- Utsav Garg
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Yasser Azim
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| |
Collapse
|
12
|
Wang LY, Bu FZ, Yu YM, Niu YY, Li YT, Yan CW, Wu ZY. A novel crystalline molecular salt of sulfamethoxazole and amantadine hybridizing antiviral-antibacterial dual drugs with optimal in vitro/vivo pharmaceutical properties. Eur J Pharm Sci 2021; 163:105883. [PMID: 34022409 DOI: 10.1016/j.ejps.2021.105883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
In order to exploit the advantages to the full of multidrug salification strategy in amending the pharmaceutical properties of drugs both in vitro and in vivo, and further to open up a new way for its applications in bacteria-virus mixed cross-infection drugs, a novel dual-drug crystalline molecular salt hybridizing antibacterial drug sulfamethoxazole (SFM) with antiviral ingredient amantadine (ATE), namely SFM-ATE, is successfully designed and synthesized via multidrug salification strategy oriented by proton exchange reaction. The crystal structure of the firstly obtained molecular salt is precisely identified by employing single-crystal X-ray diffraction and multiple other techniques. The results show that, in the crystal lattice of molecular salt SFM-ATE, the classical hydrogen bonds together with charge-assisted hydrogen bonds contribute to two- dimensional networks, between which the hydrophobic interaction plays an important role. The relevant in vitro/vivo pharmaceutical properties of the dual-drug molecular salt are carried out through a comparative investigation of theoretical and experimental methods. It has been found that SFM displays concurrent improvements over the bulk drug in its permeability and dissolution after forming the molecular salt, which is supported by the molecular electrostatic potential calculation and Hirshfeld surface analysis. Encouragingly, the perfected in vitro biopharmaceutical properties can effectually turn into the in vivo pharmacokinetic preponderances with the expedited peak plasma concentration, lengthened half-life and enhanced bioavailability. Better yet, the antibacterial activities of SFM from the molecular salt get stronger with enlargement in inhibition areas and reduction in values of minimum inhibitory concentrations against the tested bacterial strains. Consequently, the present contribution not only supplies an opportunity for widening applications for classical sulfa drugs via dual-drug salification strategy, but also offers an alternative approach in dealing with viral-bacterial coinfection even other complex diseases by drugs' hybridization at the molecular level.
Collapse
Affiliation(s)
- Ling-Yang Wang
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Fan-Zhi Bu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yuan-Yuan Niu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China.
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| |
Collapse
|
13
|
Yu YM, Niu YY, Wang LY, Li YT, Wu ZY, Yan CW. Supramolecular self-assembly and perfected in vitro/ vivo property of 5-fluorouracil and ferulic acid on the strength of double optimized strategy: the first 5-fluorouracial-phenolic acid nutraceutical cocrystal with synergistic antitumor efficacy. Analyst 2021; 146:2506-2519. [PMID: 33899060 DOI: 10.1039/d1an00171j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For highlighting the predominance of phenolic acid nutraceutical ferulic acid (FR) in regulating the in vivo/vitro performances of anticancer drug 5-fluorouracil (Flu) and strengthening their cooperativity in antitumor effect, thus achieving a major breakthrough in the development of drug-nutraceutical cocrystal with synergistic antitumor action, a cocrystallization strategy of dual optimization is created, in which both the in vivo and vitro natures of Flu are improved by exploiting the FR's excellent physicochemical property. Moreover, Flu's anticancer effects were promoted by exerting the assistant antitumor peculiarity of FR. Such dual optimization of FR for Flu in physicochemical properties and anticancer activities is beneficial for realizing synergistic augmentation effect by taking the benefit of the cooperativeness of Flu and FR in the anticancer ability. Based on this idea, a novel cocrystal of Flu and FR, namely, Flu-FR-H2O, is successfully assembled as the first 5-fluorouracil-nutraceutical cocrystal with synergistic antitumor effect and its explicit structure is resolved. The single-crystal X-ray diffraction demonstrates that Flu and FR have a ratio of 1 : 1 with one equivalent of solvent water in the cocrystal, where one-dimensional hydrogen-bonding helices and FR-Flu hydrogen-bonding pairs, together construct a three-dimensional supramolecular network. By combining experimental evaluation with theoretical analysis, in vitro/vivo pharmaceutical properties are scientifically investigated. Results show that the permeability and aqueous solubility of Flu are respectively elevated by 5.08 and 1.64 folds, which has brought about ameliorated pharmacokinetics, thus providing prolonged retention time and increased oral bioavailability. More interestingly, the cocrystal shows synergistic inhibition ability of Flu and FR against tested tumor cell strains, hence laying the groundwork for reducing the dosage and even the toxic side effects of Flu. As a result of this, the present research not only provides a new strategy for Flu to optimize its physicochemical properties and antitumor activities simultaneously but also offers some opinions for the development of synergistic antitumor pharmaceutical cocrystals.
Collapse
Affiliation(s)
- Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yuan-Yuan Niu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Ling-Yang Wang
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China. and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| |
Collapse
|
14
|
Li F, Xu H, Xu X, Cang H, Xu J, Chen S. Supramolecular salts assembled by melamine and two organic hydroxyl acids: synthesis, structure, hydrogen bonds, and luminescent property. CrystEngComm 2021. [DOI: 10.1039/d0ce01647k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two novel supramolecular salts are synthesized by melamine and organic hydroxyl carboxylic acids. The structure prediction, purity, luminescent property, and thermal stability are investigated by theoretical and experimental analysis.
Collapse
Affiliation(s)
- Fengcai Li
- College of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224000
- PR China
| | - Hao Xu
- College of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224000
- PR China
| | - Xinwei Xu
- College of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224000
- PR China
| | - Hui Cang
- College of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224000
- PR China
| | - Jiaying Xu
- State Key Laboratory of Coordination Chemistry, and
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- People's Republic of China
| | - Song Chen
- College of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224000
- PR China
| |
Collapse
|
15
|
Rai SK, Baidya D, Nangia AK. Salts, solvates and hydrates of the multi-kinase inhibitor drug pazopanib with hydroxybenzoic acids. CrystEngComm 2021. [DOI: 10.1039/d1ce00785h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eight cocrystal-salts of the multi-kinase drug pazopanib with hydroxybenzoic acids are sustained by the strong, ionic aminopyridinium⋯carboxylate heterosynthon of N–H⋯O hydrogen bonds between the carboxylic acid donor and amino-pyrimidine acceptor.
Collapse
Affiliation(s)
- Sunil K. Rai
- Division of Organic Chemistry, CSIR – National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Debjani Baidya
- Division of Organic Chemistry, CSIR – National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Ashwini K. Nangia
- Division of Organic Chemistry, CSIR – National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Central University P.O., Hyderabad 500 046, India
| |
Collapse
|
16
|
Abidi SSA, Garg U, Azim Y, Alam M, Gupta AK, Pradeep CP, Azum N, Asiri AM. Spectroscopic, Structural, DFT and Molecular Docking Studies on Novel Cocrystal Salt Hydrate of Chromotropic Acid and Its Antibiofilm Activity. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04822-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|