1
|
Sekhani A, Jha R, Shah PJ. Novel Pharmaceutical Cocrystal Consisting of Chlorzoxazone and Nicotinamide: A New Promising Carrier for Solubility Augmentation. Assay Drug Dev Technol 2024; 22:425-434. [PMID: 39512129 DOI: 10.1089/adt.2024.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Chlorzoxazone (CHZ) is a centrally acting muscle relaxant used to treat muscle spasms. It is employed as a first-line medication for treating muscle spasms, offering both musculoskeletal relaxation and mild sedative effects. According to the biopharmaceutics classification system, it belongs to class II drug having poor solubility and high permeability. In order to improve the flow property, water solubility, and dissolution of CHZ, CHZ-nicotinamide (NA) cocrystal was prepared by liquid-assisted grinding cocrystallization (LAG CC) method using methanol as the choice of solvent. CHZ-NA cocrystal was characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry, and scanning electron microscopy (SEM). DSC scan showed a sharp endothermic peak shift, which is caused by the formation of a new crystal form with altered physical properties, which was further confirmed by PXRD. Also, a change in the surface morphology of LAG CC compared to CHZ was observed in SEM. The resultant CHZ-NA cocrystal displayed improved powder flow properties compared to the native form of CHZ. LAG CC demonstrated a 3.1- and 2.6-fold increase in saturated solubility and intrinsic dissolution rate, respectively, compared to CHZ alone. Furthermore, the in vitro dissolution study showed that the cumulative dissolution of CHZ in 2 h was about 53%. Whereas, dissolution of LAG CC reached 99% in 2 h, showing obvious dissolution improvement. Thus, CHZ-NA cocrystal could significantly improve the flow properties, solubility and dissolution of CHZ.
Collapse
Affiliation(s)
- Arzoo Sekhani
- Maliba Pharmacy College, Uka Tarsadia University, Surat, India
| | - Rahul Jha
- Maliba Pharmacy College, Uka Tarsadia University, Surat, India
| | - Pranav J Shah
- Maliba Pharmacy College, Uka Tarsadia University, Surat, India
| |
Collapse
|
2
|
Zhou Y, Tu Y, Yang J, Qian K, Liu X, Fu Q, Xu X, Chen S. Enhancing the Stability, Solubility, and Antioxidant Activity of Cinchonine through Pharmaceutical Cocrystallization. Pharm Res 2024; 41:1257-1270. [PMID: 38844745 DOI: 10.1007/s11095-024-03712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/05/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE Cinchoninze hydrochloride solves the problem of the low solubility of cinchonine, but it is unstable and susceptible to deliquescence. In this study, we designed and prepared cinchonine cocrystal salts or cinchonine salts with better stability, solubility and antioxidant activity than cinchonine. METHOD We successfully synthesized and characterized three cinchonine salts, namely, cinchonine-fumaric acid, cinchonine-isoferulic acid, and cinchonine-malic acid. The high humidity (92.5% RH) and high temperature (60°C) tests were conducted to determine the physical stability and hygroscopicity of cinchonine hydrochloride, cinchonine and three cinchonine salts. And the ultraviolet spectrophotometry was conducted to determine the equilibrium solubility and intrinsic dissolution rate of cinchonine and salts. Moreover, the DPPH, ABTS, and FRAP assays determined the antioxidant activity of cinchonine and salts. RESULT Compared with cinchonine hydrochloride and cinchonine, all three cinchonine salts exhibited good physical stability over 15 days under high humidity (92.5% RH) and high temperature (60°C) conditions. While cinchonine and cinchonine hydrochloride are categorized as hygroscopic and deliquescent, respectively, three cinchonine salts are classified as slightly hygroscopic, meaning that they have a lower hygroscopicity than cinchonine and cinchonine hydrochloride. And three cinchonine salts had higher equilibrium solubility, faster intrinsic dissolution rates, and higher antioxidant activity in comparison to cinchonine. Moreover, they showed a "spring and parachute" pattern in the phosphate buffer (pH = 6.8). CONCLUSION Cocrystallization technology is a viable option for improving cinchonine's poor physicochemical qualities.
Collapse
Affiliation(s)
- Yi Zhou
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yan Tu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Jie Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| | - Kun Qian
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| | - Xueyang Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Qingxia Fu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Xianghong Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Shiyu Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| |
Collapse
|
3
|
Shankara S, Hegde VN, Manju V, Eshwarappa K, Deeksha K, Hemaraju B. Crystal growth and characterization of glycine chlorzoxazone nonlinear optical crystal for energy storage capacitor applications. CHEMICAL PHYSICS IMPACT 2024; 8:100556. [DOI: 10.1016/j.chphi.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
|
4
|
Creteanu A, Lisa G, Vasile C, Popescu MC, Pamfil D, Lungu CN, Panainte AD, Tantaru G. New Hydrophilic Matrix Tablets for the Controlled Released of Chlorzoxazone. Int J Mol Sci 2024; 25:5137. [PMID: 38791175 PMCID: PMC11120910 DOI: 10.3390/ijms25105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The modified release of active substances such as chlorzoxazone from matrix tablets, based on Kollidon®SR and chitosan, depends both on the drug solubility in the dissolution medium and on the matrix composition. The aim of this study is to obtain some new oral matrix tablet formulations, based on Kollidon®SR and chitosan, in order to optimize the low-dose oral bioavailability of chlorzoxazone, a non-steroidal anti-inflammatory drug of class II Biopharmaceutical Classification System. Nine types of chlorzoxazone matrix tablets were obtained using the direct compression method by varying the components ratio as 1:1, 1:2, and 1:3 chlorzoxazone/excipients, 20-40 w/w % Kollidon®SR, 3-7 w/w % chitosan while the auxiliary substances: Aerosil® 1 w/w %, magnesium stearate 0.5 w/w % and Avicel® up to 100 w/w % were kept in constant concentrations. Pharmaco-technical characterization of the tablets included the analysis of flowability and compressibility properties (flow time, friction coefficient, angle of repose, Hausner ratio, and Carr index), and pharmaco-chemical characteristics (such as mass and dose uniformity, thickness, diameter, mechanical strength, friability, softening degree, and in vitro release profiles). Based on the obtained results, only three matrix tablet formulations (F1b, F2b, and F3b, containing 30 w/w % KOL and 5 w/w % CHT, were selected and further tested. These formulations were studied in detail by Fourier-transform infrared spectrometry, X-ray diffraction, thermogravimetry, and differential scanning calorimetry. The three formulations were comparatively studied regarding the release kinetics of active substances using in vitro release testing. The results were analyzed by fitting into four representative mathematical models for the modified-release oral formulations. In vitro kinetic study revealed a complex mechanism of release occurring in two steps of drug release, the first step (0-2 h) and the second (2-36 h). Two factors were calculated to assess the release profile of chlorzoxazone: f1-the similarity factor, and f2-the factor difference. The results have shown that both Kollidon®SR and chitosan may be used as matrix-forming agents when combined with chlorzoxazone. The three formulations showed optima pharmaco-technical properties and in vitro kinetic behavior; therefore, they have tremendous potential to be used in oral pharmaceutical products for the controlled delivery of chlorzoxazone. In vitro dissolution tests revealed a faster drug release for the F2b sample.
Collapse
Affiliation(s)
- Andreea Creteanu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania;
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, 73 Dimitrie Mangeron Prof., Str., 700050 Iași, Romania;
| | - Cornelia Vasile
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iași, Romania; (C.V.); (M.-C.P.); (D.P.)
| | - Maria-Cristina Popescu
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iași, Romania; (C.V.); (M.-C.P.); (D.P.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iași, Romania; (C.V.); (M.-C.P.); (D.P.)
| | - Claudiu N. Lungu
- Departament of Functional and Morphological Science, Faculty of Medicine and Pharamacy, Dunarea de Jos University, 800008 Galati, Romania
| | - Alina Diana Panainte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania;
| | - Gladiola Tantaru
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania;
| |
Collapse
|
5
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Structural Landscape of α-Acetamidocinnamic Acid Cocrystals with Bipyridine-Based Coformers: Influence of Crystal Packing on Their Thermal and Photophysical Properties. CRYSTAL GROWTH & DESIGN 2024; 24:1746-1765. [PMID: 38405168 PMCID: PMC10885007 DOI: 10.1021/acs.cgd.3c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Controlling the supramolecular synthon outcome in systems with different functionalities has been a key factor for the design of supramolecular materials, which also affected their physicochemical properties. In this contribution, we have analyzed the structural landscape of α-acetamidocinnamic acid (HACA) aiming to find its synthon outcome from the competitivity between its acidic and amidic groups. We prepared four multicomponent forms including one dihydrate (HACA·2H2O) and three cocrystals bearing different bipyridine coformers with formulas (HACA)2(1,2-bpe) (1), (HACA)2(4,4'-azpy) (2), and (HACA)2(4,4'-bipy)3 (3) (1,2-bpe = 1,2-bis(4-pyridyl)ethylene; 4,4'-azpy = 4,4'-azopyridine; 4,4'-bipy = 4,4'-bipyridine). First, we applied a virtual screening approach to assess the feasibility of cocrystal formation. Then, we synthesized the cocrystals, via liquid-assisted grinding (LAG) (1 and 2) or solvothermal (3) techniques, and single crystals of HACA, and their four multicomponent forms were obtained showing different synthons and crystal packings. Besides, a Cambridge Structural Database (CSD) search of the cocrystals presenting bipyridine-type coformers and molecules with acid and amide functionalities was performed, and the observed synthon occurrences as well as the possibility of synthon modification by tuning the H-donor/H-acceptor propensity of the acidic and amidic groups were shown. Finally, we measured their thermal and photophysical properties, which were correlated with their structural features.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament
de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat
de Difracció de Raig-X, Centres Científics i Tecnològics
de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
6
|
Pandey N, Kumari N, Roy P, Mondal SK, Thakur A, Sun CC, Ghosh A. Tuning Caco-2 permeability by cocrystallization: Insights from molecular dynamics simulation. Int J Pharm 2024; 650:123666. [PMID: 38065346 DOI: 10.1016/j.ijpharm.2023.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Emerging evidence suggests that intestinal permeability can be potentially enhanced through cocrystallization. However, a mechanism for this effect remains to be established. In this study, we first demonstrate the enhancement in intestinal permeability, evaluated by the Caco-2 cell permeability assay, of acetazolamide (ACZ) in the presence of a conformer, p-aminobenzoic acid (PABA), delivered in the form of a 1:1 cocrystal. The binding strength of ACZ and PABA with the Pgp efflux transporter, either alone or as a mixture, was calculated using molecular dynamics simulation. Results show that PABA weakens the binding of ACZ with Pgp, which leads to a lower efflux ratio and elevated permeability of ACZ. This work provides molecular-level insights into a potentially effective strategy to improve the intestinal permeability of drugs. If the same cocrystal also exhibits higher solubility, oral bioavailability of BCS IV drugs can likely be improved by forming a cocrystal with a Pgp inhibitor.
Collapse
Affiliation(s)
- Noopur Pandey
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Nimmy Kumari
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Parag Roy
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Susanta Kumar Mondal
- TCG Life Sciences Pvt. Ltd, Block-EP & GP, BIPL, Tower-B, Salt Lake, Sector-V, Kolkata, 700091, India
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States.
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, United States.
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
7
|
Roy P, Kumari N, Pandey N, Gour A, Raj A, Srividya B, Nandi U, Ghosh A. Development of ezetimibe eutectic with improved biopharmaceutical and mechanical properties to design an optimized oral solid dosage formulation. Pharm Dev Technol 2022; 27:989-998. [PMID: 36322702 DOI: 10.1080/10837450.2022.2143525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eutectics are multicomponent systems which are an alternative to the conventional techniques for modulating the biopharmaceutical properties of a pharmaceutical. Ezetimibe (ETZ) is a hypocholesterolemic agent with limited dissolution, poor water solubility, and subsequently demonstrates low oral bioavailability. Additionally, ETZ exhibits poor mechanical properties, leading to difficulties in developing dosage forms through direct compression. The present work highlights the applicability of eutectics in the simultaneous improvement of physicochemical along with mechanical properties of ETZ. A pharmaceutical eutectic of ETZ with succinimide (SUC) was prepared by mechanochemical grinding and thoroughly characterized using thermoanalytical, X-ray diffraction, and spectroscopic methods. Intrinsic dissolution rate and pharmacokinetic analysis were also performed for ezetimibe-succinimide (ETZ-SUC) eutectic in contrast to pure ETZ. The eutectic demonstrated ∼2-fold increase in the solubility and dissolution rate. In pharmacokinetic studies, the area under the curve (AUC) for ETZ-SUC eutectic (28.03 ± 2.22 ng*h/mL) was found to be higher than ETZ (8.98 ± 0.36 ng*h/mL), indicating improved oral bioavailability for eutectics. Also, it was observed that enhanced material functionality aids in designing directly compressed tablets, where the eutectic formulation showed an improved dissolution profile over the ETZ formulation. The study demonstrates that eutectic conglomerates could be utilized to develop ideal oral solid dosage formulations.
Collapse
Affiliation(s)
- Parag Roy
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India.,Department of Pharmacy, Muzaffarpur Institute of Technology, Muzaffarpur, Muzaffarpur, India
| | - Noopur Pandey
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Abhishek Gour
- PK-PD, Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Amit Raj
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - B Srividya
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Utpal Nandi
- PK-PD, Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
8
|
Gefitinib-resveratrol Cocrystal with Optimized Performance in Dissolution and Stability. J Pharm Sci 2022; 111:3224-3231. [PMID: 36202251 DOI: 10.1016/j.xphs.2022.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Gefitinib (GEF) is an anti-tumor oral solid formulation with a superior advantage for lung tumors. However, it has poor aqueous solubility which limits its utility in vivo. Herein, a novel cocrystal (GEF-RES) assembled by GEF and RES (Resveratrol) has been successfully prepared and comprehensively characterized by differential scanning calorimetry, thermogravimetric analysis, Raman spectroscopy and powder X-ray diffraction. A single-crystal structure of the GEF-RES cocrystal was solved and illustrated in detail. In aqueous hydrochloric acid, the GEF-RES cocrystal showed that the maximum concentration of GEF was slightly higher than that of raw GEF. Furthermore, the thermal and physical stability of the GEF-RES cocrystal were also evaluated in this paper. The enhanced solubility and excellent solid-state stability results may provide new potential to the application of key GEF in clinical.
Collapse
|
9
|
An outlook on permeability escalation through cocrystallization for developing pharmaceuticals with improved biopharmaceutical properties. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Preparation and structure analysis of non-covalent interactions mediated 2D-3D supramolecular adducts from 6-methylnicotinamide and carboxylic acids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Roy P, Pandey N, Kumari N, Baidya R, Mary YS, Mary YS, Ghosh A. Development of Sulfamethoxazole-Succinimide cocrystal by mechanochemical cocrystallization- an insight into spectroscopic, electronic, chemical conformation and physicochemical properties. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Yeh SJ, Yeh TY, Chen BS. Systems Drug Discovery for Diffuse Large B Cell Lymphoma Based on Pathogenic Molecular Mechanism via Big Data Mining and Deep Learning Method. Int J Mol Sci 2022; 23:ijms23126732. [PMID: 35743172 PMCID: PMC9224183 DOI: 10.3390/ijms23126732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive heterogeneous disease. The most common subtypes of DLBCL include germinal center b-cell (GCB) type and activated b-cell (ABC) type. To learn more about the pathogenesis of two DLBCL subtypes (i.e., DLBCL ABC and DLBCL GCB), we firstly construct a candidate genome-wide genetic and epigenetic network (GWGEN) by big database mining. With the help of two DLBCL subtypes’ genome-wide microarray data, we identify their real GWGENs via system identification and model order selection approaches. Afterword, the core GWGENs of two DLBCL subtypes could be extracted from real GWGENs by principal network projection (PNP) method. By comparing core signaling pathways and investigating pathogenic mechanisms, we are able to identify pathogenic biomarkers as drug targets for DLBCL ABC and DLBCL GCD, respectively. Furthermore, we do drug discovery considering drug-target interaction ability, drug regulation ability, and drug toxicity. Among them, a deep neural network (DNN)-based drug-target interaction (DTI) model is trained in advance to predict potential drug candidates holding higher probability to interact with identified biomarkers. Consequently, two drug combinations are proposed to alleviate DLBCL ABC and DLBCL GCB, respectively.
Collapse
|
13
|
Barbas R, Font-Bardia M, Frontera A, Prohens R. Polymorphism in the 1/1 Pterostilbene/Picolinic Acid Cocrystal. CRYSTAL GROWTH & DESIGN 2022; 22:590-597. [PMID: 35024004 PMCID: PMC8740285 DOI: 10.1021/acs.cgd.1c01146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/03/2021] [Indexed: 06/14/2023]
Abstract
The crystal structures of two new polymorphs of the 1/1 pterostilbene/picolinic acid cocrystal have been analyzed by single-crystal X-ray diffraction and studied by means of DFT calculations and a set of computational tools (QTAIM, NCIplot, MEP). The observation of a new R2 2(10) synthon in each of the two polymorphs has been analyzed energetically, characterized using the topology of the electron density, and rationalized using the MEP surfaces. The exceptional bioavailability of the cocrystal is explained on the basis of BFDH morphology calculations, and the study is complemented by a deep analysis of the supramolecular synthons formed by both neutral and zwitterionic forms of picolinic acid, a versatile coformer for crystal engineering.
Collapse
Affiliation(s)
- Rafael Barbas
- Unitat
de Polimorfisme i Calorimetria, Centres Científics i Tecnològics, Universitat de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat
de Difracció de Raigs X, Centres Científics i Tecnològics, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Rafel Prohens
- Unitat
de Polimorfisme i Calorimetria, Centres Científics i Tecnològics, Universitat de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
- Center
for Intelligent Research in Crystal Engineering S.L., Parc Científic de Barcelona, Baldiri Reixac, 4-8, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B 2021; 11:2537-2564. [PMID: 34522597 PMCID: PMC8424375 DOI: 10.1016/j.apsb.2021.03.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Pharmaceutical cocrystals are multicomponent systems in which at least one component is an active pharmaceutical ingredient and the others are pharmaceutically acceptable ingredients. Cocrystallization of a drug substance with a coformer is a promising and emerging approach to improve the performance of pharmaceuticals, such as solubility, dissolution profile, pharmacokinetics and stability. This review article presents a comprehensive overview of pharmaceutical cocrystals, including preparation methods, physicochemical properties, and applications. Furthermore, some examples of drug cocrystals are highlighted to illustrate the effect of crystal structures on the various aspects of active pharmaceutical ingredients, such as physical stability, chemical stability, mechanical properties, optical properties, bioavailability, sustained release and therapeutic effect. This review will provide guidance for more efficient design and manufacture of pharmaceutical cocrystals with desired physicochemical properties and applications.
Collapse
|
15
|
Wang LY, Niu YY, Zhao MY, Yu YM, Li YT, Wu ZY, Yan CW. Supramolecular self-assembly of amantadine hydrochloride with ferulic acid via dual optimization strategy establishes a precedent of synergistic antiviral drug-phenolic acid nutraceutical cocrystal. Analyst 2021; 146:3988-3999. [PMID: 34013306 DOI: 10.1039/d1an00478f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To display the capability of the phenolic acid nutraceutical ferulic acid (FLA) in optimizing the in vitro/in vivo properties of the antiviral drug amantadine hydrochloride (AMH) and achieve synergistically enhanced antiviral effects, thereby gaining some new insights into pharmaceutical cocrystals of antiviral drugs with phenolic acid nutraceuticals, a cocrystallization strategy of dual optimization was created. Based on this strategy, the first drug-phenolic acid nutraceutical cocrystal of AMH with FLA, namely AMH-FLA-H2O, was successfully assembled and completely characterized by employing single-crystal X-ray diffraction and other analytical techniques. The cocrystal was revealed to be composed of AMH, FLA, and water molecules in the ratio of 3 : 1 : 1.5, and charge-assisted hydrogen bonds containing chloride ions crucially maintained the crystal lattice together with water molecules. The in vitro/in vivo properties of the cocrystal were systematically evaluated via both theoretical and experimental methods, and the results indicate that the dissolubility of AMH is down-regulated by two-thirds in the cocrystal, resulting in its potential for sustained pharmacokinetic release and the elimination of the adverse effects of AMH. More importantly, the enhanced antiviral effects of the current cocrystal were proven against four viral strains, and the pharmaceutical synergy between AMH and FLA was realized with a combination index (CI) of less than 1. Thus, the present work provides a novel crystalline product with bright commercial prospect for the classical antiviral drug AMH and also establishes an avenue for the synergetic antiviral application of nutraceutical phenolic acids via the cocrystallization strategy of dual optimization.
Collapse
Affiliation(s)
- Ling-Yang Wang
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yuan-Yuan Niu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Ming-Yu Zhao
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China. and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science. Qingdao, Shandong, PR China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| |
Collapse
|
16
|
Cocrystals Based on 4,4’-bipyridine: Influence of Crystal Packing on Melting Point. CRYSTALS 2021. [DOI: 10.3390/cryst11020191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The reactions of piperonylic acid (HPip) and cinnamic acid (HCinn) with 4,4’-bipyridine (4,4’-bipy) have been assayed using the same synthetic methodology, yielding two binary cocrystals with different acid:4,4’-bipy molar ratios, (HPip)(4,4’-bipy) (1) and (HCinn)2(4,4’-bipy) (2). The melting point (m.p.) of these cocrystals have been measured and a remarkable difference (ΔT ≈ 78 °C) between them was observed. Moreover, the two cocrystals have been characterized by powder X-ray diffraction (PXRD), elemental analysis (EA), FTIR-ATR, 1H NMR spectroscopies, and single-crystal X-ray diffraction. The study of their structural packings via Hirshfeld surface analysis and energy frameworks revealed the important contribution of the π···π and C-H···π interactions to the formation of different structural packing motifs, this being the main reason for the difference of m.p. between them. Moreover, it has been observed that 1 and 2 presented the same packing motifs as the crystal structure of their corresponding carboxylic acids, but 1 and 2 showed lower m.p. than those of the carboxylic acids, which could be related to the lower strength of the acid-pyridine heterosynthons respect to the acid-acid homosynthons in the crystal structures.
Collapse
|
17
|
Gołdyn MR, Larowska D, Bartoszak-Adamska E. Novel Purine Alkaloid Cocrystals with Trimesic and Hemimellitic Acids as Coformers: Synthetic Approach and Supramolecular Analysis. CRYSTAL GROWTH & DESIGN 2021; 21:396-413. [PMID: 36466627 PMCID: PMC9714640 DOI: 10.1021/acs.cgd.0c01242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this work, benzene-1,3,5-tricarboxylic (trimesic acid, TMSA) and benzene-1,2,3-tricarboxylic acid (hemimellitic acid, HMLA) were used as coformers for cocrystal synthesis with chosen purine alkaloids. Theobromine (TBR) forms cocrystals TBR·TMSA and TBR·HMLA with these acids. Theophylline (TPH) forms cocrystals TPH·TMSA and TPH·HMLA, the cocrystal hydrate TPH·TMSA·2H2O and the salt hydrate (TPH)+·(HMLA)-·2H2O. Caffeine (CAF) forms the cocrystal CAF·TMSA and the cocrystal hydrate CAF·HMLA·H2O. The purine alkaloid derivatives were obtained by solution crystallization and by neat or liquid-assisted grinding. The powder X-ray diffraction method was used to confirm the synthesis of the novel substances. All of these solids were structurally characterized, and all synthons formed by purine alkaloids and carboxylic acids were recognized using a single-crystal X-ray diffraction method. The Cambridge Structural Database was used to determine the frequency of occurrence of analyzed supramolecular synthons, which is essential at the crystal structure design stage. Determining the influence of structural causes on the various synthon formations and molecular arrangements in the crystal lattice was possible using structurally similar purine alkaloids and two isomers of benzenetricarboxylic acid. Additionally, UV-vis measurements were made to determine the effect of cocrystallization on purine alkaloid solubility.
Collapse
|
18
|
Hao QQ, Dai XL, Huang YL, Chen JM, Lu TB. Modulation of Solid-State Optical Properties of o-Hydroxynaphthoic Acids through Formation of Charge Transfer Cocrystals with TCNB. CRYSTAL GROWTH & DESIGN 2020; 20:7492-7500. [DOI: 10.1021/acs.cgd.0c01169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qian-Qian Hao
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384, People’s Republic of China
| | - Xia-Lin Dai
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion,, School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin 300384, People’s Republic of China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, People’s Republic of China
| | - Jia-Mei Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion,, School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin 300384, People’s Republic of China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384, People’s Republic of China
| |
Collapse
|
19
|
Abstract
Cocrystallization of pharmaceuticals has been an exciting field of interest to both academia and industries, demonstrated from its increasing growth rate of publications, patents, and marketed formulations.
Collapse
Affiliation(s)
- Parag Roy
- Department of Pharmaceutical Sciences & Technology
- Birla Institute of Technology
- Mesra
- Ranchi
- India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences & Technology
- Birla Institute of Technology
- Mesra
- Ranchi
- India
| |
Collapse
|