Fortunato A, Mba M. Metal Cation Triggered Peptide Hydrogels and Their Application in Food Freshness Monitoring and Dye Adsorption.
Gels 2021;
7:85. [PMID:
34287282 PMCID:
PMC8293139 DOI:
10.3390/gels7030085]
[Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Metal-ligand interactions have emerged as an important tool to trigger and modulate self-assembly, and to tune the properties of the final supramolecular materials. Herein, we report the metal-cation induced self-assembly of a pyrene-peptide conjugate to form hydrogels. The peptide has been rationally designed to favor the formation of β-sheet 1D assemblies and metal coordination through the Glu side chains. We studied in detail the self-assembly process in the presence of H+, Li+, Na+, K+, Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, Co2+, Fe3+, and Cr3+ and found that the morphology and mechanical properties of the hydrogels are ion-dependent. Moreover, thanks to the presence of the metal, new applications could be explored. Cu2+ metallogels could be used for amine sensing and meat freshness monitoring, while Zn2+ metallogels showed good selectivity for cationic dye adsorption and separation.
Collapse