1
|
Exploration of supramolecular and theoretical aspects of two new Cu(II) complexes: On the importance of lone pair···π(chelate ring) and π···π(chelate ring) interactions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
2
|
Tiekink ERT. A bibliographic survey of the supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in metal-organic crystals. Z KRIST-CRYST MATER 2022. [DOI: 10.1515/zkri-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A survey of the crystallographic literature of metal-organic crystal structures for the presence of C–I···π(arene) interactions where the iodide atom occupies a position close to plumb to the ring centroid, corresponding to a delocalised interaction, and is within the assumed sum of the van der Waals radii, i.e. 3.88 Å, has been undertaken. The majority of the 26 identified examples feature supramolecular chains of varying topology whereby C–I···π(arene) contacts are readily identified and apparently operating independently of other obvious supramolecular synthons. The next most prevalent supramolecular aggregate was zero-dimensional, containing up to a maximum of three molecules. While there were three examples of two-dimensional arrays among a series of isostructural crystal structures, no examples of three-dimensional structures largely sustained by C–I···π(arene) interactions were noted. This distribution of supramolecular aggregation patterns matched that noted for all-organic systems. In terms of the overall adoption rate, delocalised C–I···π(arene) interactions were found in 3% of crystals of metal-organic species where they could form, a percentage lower than 4% noted for all-organic crystals.
Collapse
Affiliation(s)
- Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University , 5 Jalan Universiti, Bandar Sunway , Selangor Darul Ehsan 47500 , Malaysia
| |
Collapse
|
3
|
Rajakumar K, Sharutin VV, Adonin SA, Zherebtsov DA, Sakhapov IF, Islamov DR, Prabunatan P, Vershinin MA, Naifert SA, Polozov MA. DI- AND TETRAIODOXYLENES: STRUCTURE AND FEATURES OF NON-COVALENT INTERACTIONS IN A SOLID STATE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622040138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Tan SL, Lo KM, Tan YS, Tiekink ERT. Structural systematics in the isomorphous binary co-crystal solvates comprising 2,2'-dithiodibenzoic acid, 4-halobenzoic acid and dimethylformamide (1:1:1), for halide = chloride, bromide and iodide. CrystEngComm 2022. [DOI: 10.1039/d2ce00094f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1:1:1 binary co-crystal solvates formulated as 2,2'-dithiodibenzoic acid (DTBA), 4-halobenzoic acid (4-XBA) and dimethylformamide (DMF) for X = Cl (1), Br (2) and I (3) are isomorphous and the...
Collapse
|
5
|
Yeo CI, Tan YS, Kwong HC, Lee VS, Tiekink ERT. I⋯N halogen bonding in 1 : 1 co-crystals formed between 1,4-diiodotetrafluorobenzene and the isomeric n-pyridinealdazines ( n = 2, 3 and 4): assessment of supramolecular association and influence upon solid-state photoluminescence properties. CrystEngComm 2022. [DOI: 10.1039/d2ce01165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1 : 1 co-crystals formed between 1,4-diiodotetrafluorobenzene and each of the three isomeric n-pyridinealdazines (n = 2, 3 and 4), featuring I⋯N halogen bonding contacts within one-dimensional chains, are described.
Collapse
Affiliation(s)
- Chien Ing Yeo
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yee Seng Tan
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Huey Chong Kwong
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | | | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Adapting (4,4) Networks through Substituent Effects and Conformationally Flexible 3,2':6',3"-Terpyridines. Molecules 2021; 26:molecules26216337. [PMID: 34770746 PMCID: PMC8587907 DOI: 10.3390/molecules26216337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Coordination networks formed between Co(NCS)2 and 4'-substituted-[1,1'-biphenyl]-4-yl-3,2':6',3"-terpyridines in which the 4'-group is Me (1), H (2), F (3), Cl (4) or Br (5) are reported. [Co(1)2(NCS)2]n·4.5nCHCl3, [Co(2)2(NCS)2]n·4.3nCHCl3, [Co(3)2(NCS)2]n·4nCHCl3, [Co(4)2(NCS)2]n, and [Co(5)2(NCS)2]n·nCHCl3 are 2D-networks directed by 4-connecting cobalt nodes. Changes in the conformation of the 3,2':6',3"-tpy unit coupled with the different peripheral substituents lead to three structure types. In [Co(1)2(NCS)2]n·4.5nCHCl3, [Co(2)2(NCS)2]n·4.3nCHCl3, [Co(3)2(NCS)2]n·4nCHCl3, cone-like arrangements of [1,1'-biphenyl]-4-yl units pack through pyridine…arene π-stacking, whereas Cl…π interactions are dominant in the packing in [Co(4)2(NCS)2]n. The introduction of the Br substituent in ligand 5 switches off both face-to-face π-stacking and halogen…π-interactions, and the packing interactions are more subtly controlled. Assemblies with organic linkers 1-3 are structurally similar and the lattice accommodates CHCl3 molecules in distinct cavities; thermogravimetric analysis confirmed that half the solvent in [Co(3)2(NCS)2]n·4nCHCl3 can be reversibly removed.
Collapse
|
7
|
Campillo-Alvarado G, Bernhardt M, Davies DW, Soares JANT, Woods TJ, Diao Y. Modulation of π-stacking modes and photophysical properties of an organic semiconductor through isosteric cocrystallization. J Chem Phys 2021; 155:071102. [PMID: 34418924 DOI: 10.1063/5.0059770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on the control of π-stacking modes (herringbone vs slipped-stack) and photophysical properties of 9,10-bis((E)-2-(pyridin-4-yl)vinyl)anthracene (BP4VA), an anthracene-based organic semiconductor (OSC), by isosteric cocrystallization (i.e., the replacement of one functional group in a coformer with another of "similar" electronic structure) with 2,4,6-trihalophenols (3X-ph-OH, where X = Cl, Br, and I). Specifically, BP4VA organizes as slipped-stacks when cocrystallized with 3Cl-ph-OH and 3Br-ph-OH, while cocrystallization with 3I-ph-OH results in a herringbone mode. The photoluminescence and molecular frontier orbital energy levels of BP4VA were effectively modulated by the presence of 3X-ph-OH through cocrystallization. We envisage that the cocrystallization of OSCs with minimal changes in cocrystal formers can provide access to convenient structural and property diversification for advanced single-crystal electronics.
Collapse
Affiliation(s)
- Gonzalo Campillo-Alvarado
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Michael Bernhardt
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Daniel W Davies
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Julio A N T Soares
- Frederick Seitz Materials Research Laboratories Central Facilities, University of Illinois Urbana-Champaign, 104 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | - Toby J Woods
- School of Chemical Sciences, University of Illinois Urbana-Champaign, 505 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Characterising Supramolecular Architectures in Crystals Featuring I⋯Br Halogen Bonding: Persistence of X⋯X’ Secondary-Bonding in Their Congeners. CRYSTALS 2021. [DOI: 10.3390/cryst11040433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Cambridge Structural Database was surveyed for crystals featuring I⋯Br secondary-bonding in their supramolecular assemblies occurring independently of other obvious supramolecular synthons and devoid of other halogen bonding interactions. In all, 41 crystals satisfied these criteria, with nine examples of zero-dimensional aggregation (uniformly two-molecule aggregates) and 30 one-dimensional chains of varying topology (linear, zigzag and helical). There is one example each of two- and three-dimensional patterns. Type-I, type-II and intermediate bonding situations are apparent; for type-II bonding, the ratio of iodide:bromide functioning as the electrophile is 2:1. Most molecules participated, on average, in one I⋯Br contact, although smaller numbers of half (zero-dimensional) or two contacts (two- and three-dimensional) were observed. The propensity of the formation of related halogen bonding interactions in congeners of the 41 investigated crystals was also studied. Congeners were apparent for 11 crystals, with seven of these exhibiting isostructural relationships, in terms of space-group symmetry and unit-cell parameters. Isostructural relationships do not ensure the formation of analogous aggregation patterns, particularly and in accord with expectation, for the lighter halides. When formed, often distinct aggregation patterns are observed despite the isostructural relationships. Hetero-atomic halogen bonding offers surprises and opportunities in crystal engineering endeavours.
Collapse
|