1
|
Zhang J, Deng W, Weng Y, Jiang J, Mao H, Zhang W, Lu T, Long D, Jiang F. Intercalated PtCo Electrocatalyst of Vanadium Metal Oxide Increases Charge Density to Facilitate Hydrogen Evolution. Molecules 2024; 29:1518. [PMID: 38611798 PMCID: PMC11013459 DOI: 10.3390/molecules29071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Efforts to develop high-performance electrocatalysts for the hydrogen evolution reaction (HER) are of utmost importance in ensuring sustainable hydrogen production. The controllable fabrication of inexpensive, durable, and high-efficient HER catalysts still remains a great challenge. Herein, we introduce a universal strategy aiming to achieve rapid synthesis of highly active hydrogen evolution catalysts using a controllable hydrogen insertion method and solvothermal process. Hydrogen vanadium bronze HxV2O5 was obtained through controlling the ethanol reaction rate in the oxidization process of hydrogen peroxide. Subsequently, the intermetallic PtCoVO supported on two-dimensional graphitic carbon nitride (g-C3N4) nanosheets was prepared by a solvothermal method at the oil/water interface. In terms of HER performance, PtCoVO/g-C3N4 demonstrates superior characteristics compared to PtCo/g-C3N4 and PtCoV/g-C3N4. This superiority can be attributed to the notable influence of oxygen vacancies in HxV2O5 on the electrical properties of the catalyst. By adjusting the relative proportions of metal atoms in the PtCoVO/g-C3N4 nanomaterials, the PtCoVO/g-C3N4 nanocomposites show significant HER overpotential of η10 = 92 mV, a Tafel slope of 65.21 mV dec-1, and outstanding stability (a continuous test lasting 48 h). The nanoarchitecture of a g-C3N4-supported PtCoVO nanoalloy catalyst exhibits exceptional resistance to nanoparticle migration and corrosion, owing to the strong interaction between the metal nanoparticles and the g-C3N4 support. Pt, Co, and V simultaneous doping has been shown by Density Functional Theory (DFT) calculations to enhance the density of states (DOS) at the Fermi level. This augmentation leads to a higher charge density and a reduction in the adsorption energy of intermediates.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Yun Weng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textile, Donghua University, Shanghai 201620, China;
| | - Jingxian Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Haifang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Wenqian Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Tiandong Lu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| | - Dewu Long
- Key Laboratory in Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
| | - Fei Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.Z.); (J.J.); (H.M.); (W.Z.); (T.L.)
| |
Collapse
|
2
|
Yin Z, Liu J, Jiang L, Chu J, Yang T, Kong A. Semi-enclosed Cu nanoparticles with porous nitrogen-doped carbon shells for efficient and tolerant nitrate electroreduction in neutral condition. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Yu S, Lu Z, Xie J, Hu J, Cao Y. Carbon-coated Fe 3O 4 nanoparticles in situ grown on 3D cross-linked carbon nanosheets as anodic materials for high capacity lithium and sodium-ion batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj01838a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Carbon coated Fe3O4 nanoparticles were grown in situ on 3D cross-linked carbon nanosheets, and exhibited excellent performance for lithium ion batteries.
Collapse
Affiliation(s)
- Shuijing Yu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China
| |
Collapse
|
4
|
Guo D, Yang M, Yang M, Yang T, Hu G, Liu H, Liu G, Wu N, Qin A, Liu X. Stabilized covalent interfacial coupling design of Li 3V 2(PO 4) 3 with carbon framework for boosting lithium storage kinetics. CrystEngComm 2021. [DOI: 10.1039/d1ce01254a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
LVP@C with stabilized electronic conductive layer is prepared by a facile organic–inorganic hybrid hydrogel-enabled methodology, in which LVP is chemically interacting with carbon framework via P–C and P–O–C bonds.
Collapse
Affiliation(s)
- Donglei Guo
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Mengmeng Yang
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Mengke Yang
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Taixin Yang
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Guobin Hu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Huigen Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Guilong Liu
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Naiteng Wu
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Aimiao Qin
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Xianming Liu
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China
| |
Collapse
|