1
|
LaForge AC, Ben Ltaief L, Krishnan SR, Sisourat N, Mudrich M. Interatomic and intermolecular decay processes in quantum fluid clusters. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:126402. [PMID: 39509722 DOI: 10.1088/1361-6633/ad8fbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
In this comprehensive review, we explore interatomic and intermolecular correlated electronic decay phenomena observed in superfluid helium nanodroplets subjected to extreme ultraviolet radiation. Helium nanodroplets, known for their distinctive electronic and quantum fluid properties, provide an ideal environment for examining a variety of non-local electronic decay processes involving the transfer of energy, charge, or both between neighboring sites and resulting in ionization and the emission of low-kinetic energy electrons. Key processes include interatomic or intermolecular Coulombic decay and its variants, such as electron transfer-mediated decay. Insights gained from studying these light-matter interactions in helium nanodroplets enhance our understanding of the effects of ionizing radiation on other condensed-phase systems, including biological matter. We also emphasize the advanced experimental and computational techniques that make it possible to resolve electronic decay processes with high spectral and temporal precision. Utilizing ultrashort pulses from free-electron lasers, the temporal evolution of these processes can be followed, significantly advancing our comprehension of the dynamics within quantum fluid clusters and non-local electronic interactions in nanoscale systems.
Collapse
Affiliation(s)
- A C LaForge
- Department of Physics, University of Connecticut, Storrs, CT 06269, United States of America
| | - L Ben Ltaief
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, C, Denmark
| | - S R Krishnan
- Department of Physics and QuCenDiEM-group, Indian Institute of Technology Madras, Chennai 600036, India
| | - N Sisourat
- Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, Sorbonne Université, CNRS, F-75005 Paris, France
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, C, Denmark
| |
Collapse
|
2
|
De S, Abid AR, Asmussen JD, Ben Ltaief L, Sishodia K, Ulmer A, Pedersen HB, Krishnan SR, Mudrich M. Fragmentation of water clusters formed in helium nanodroplets by charge transfer and Penning ionization. J Chem Phys 2024; 160:094308. [PMID: 38445733 DOI: 10.1063/5.0194098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Helium nanodroplets ("HNDs") are widely used for forming tailor-made clusters and molecular complexes in a cold, transparent, and weakly interacting matrix. The characterization of embedded species by mass spectrometry is often complicated by the fragmentation and trapping of ions in the HNDs. Here, we systematically study fragment ion mass spectra of HND-aggregated water and oxygen clusters following their ionization by charge transfer ionization ("CTI") and Penning ionization ("PEI"). While the efficiency of PEI of embedded clusters is lower than for CTI by about factor 10, both the mean sizes of detected water clusters and the relative yields of unprotonated cluster ions are significantly larger, making PEI a "soft ionization" scheme. However, the tendency of ions to remain bound to HNDs leads to a reduced detection efficiency for large HNDs containing >104 helium atoms. These results are instrumental in determining optimal conditions for mass spectrometry and photoionization spectroscopy of molecular complexes and clusters aggregated in HNDs.
Collapse
Affiliation(s)
- S De
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - A R Abid
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - J D Asmussen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - L Ben Ltaief
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - K Sishodia
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - A Ulmer
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - H B Pedersen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - S R Krishnan
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Asmussen JD, Abid AR, Sundaralingam A, Bastian B, Sishodia K, De S, Ben Ltaief L, Krishnan S, Pedersen HB, Mudrich M. Secondary ionization of pyrimidine nucleobases and their microhydrated derivatives in helium nanodroplets. Phys Chem Chem Phys 2023; 25:24819-24828. [PMID: 37671772 DOI: 10.1039/d3cp02879h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Radiation damage in biological systems by ionizing radiation is predominantly caused by secondary processes such as charge and energy transfer leading to the breaking of bonds in DNA. Here, we study the fragmentation of cytosine (Cyt) and thymine (Thy) molecules, clusters and microhydrated derivatives induced by direct and indirect ionization initiated by extreme-ultraviolet (XUV) irradiation. Photofragmentation mass spectra and photoelectron spectra of free Cyt and Thy molecules are compared with mass and electron spectra of Cyt/Thy clusters and microhydrated Cyt/Thy molecules formed by aggregation in superfluid helium (He) nanodroplets. Penning ionization after resonant excitation of the He droplets is generally found to cause less fragmentation compared to direct photoionization and charge-transfer ionization after photoionization of the He droplets. When Cyt/Thy molecules and oligomers are complexed with water molecules, their fragmentation is efficiently suppressed. However, a similar suppression of fragmentation is observed when homogeneous Cyt/Thy clusters are formed in He nanodroplets, indicating a general trend. Penning ionization electron spectra (PIES) of Cyt/Thy are broad and nearly featureless but PIES of their microhydrated derivatives point at a sequential ionization process ending in unfragmented microsolvated Cyt/Thy cations.
Collapse
Affiliation(s)
- Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Abdul R Abid
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Björn Bastian
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Keshav Sishodia
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Subhendu De
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ltaief Ben Ltaief
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Sivarama Krishnan
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Henrik B Pedersen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Asmussen JD, Sishodia K, Bastian B, Abid AR, Ben Ltaief L, Pedersen HB, De S, Medina C, Pal N, Richter R, Fennel T, Krishnan S, Mudrich M. Electron energy loss and angular asymmetry induced by elastic scattering in superfluid helium nanodroplets. NANOSCALE 2023; 15:14025-14031. [PMID: 37559557 DOI: 10.1039/d3nr03295g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Helium nanodroplets are ideal model systems to unravel the complex interaction of condensed matter with ionizing radiation. Here we study the effect of purely elastic electron scattering on angular and energy distributions of photoelectrons emitted from He nanodroplets of variable size (10-109 atoms per droplets). For large droplets, photoelectrons develop a pronounced anisotropy along the incident light beam due to a shadowing effect within the droplets. In contrast, the detected photoelectron spectra are only weakly perturbed. This opens up possibilities for photoelectron spectroscopy of dopants embedded in droplets provided they are smaller than the penetration depth of the light and the trapping range of emitted electrons in liquid helium.
Collapse
Affiliation(s)
- Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | - Keshav Sishodia
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, India
| | - Björn Bastian
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | - Abdul R Abid
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | | | | | - Subhendu De
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, India
| | | | | | | | | | - Sivarama Krishnan
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, India
| | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, Denmark.
| |
Collapse
|
5
|
Asmussen JD, Michiels R, Bangert U, Sisourat N, Binz M, Bruder L, Danailov M, Di Fraia M, Feifel R, Giannessi L, Plekan O, Prince KC, Squibb RJ, Uhl D, Wituschek A, Zangrando M, Callegari C, Stienkemeier F, Mudrich M. Time-Resolved Ultrafast Interatomic Coulombic Decay in Superexcited Sodium-Doped Helium Nanodroplets. J Phys Chem Lett 2022; 13:4470-4478. [PMID: 35561339 DOI: 10.1021/acs.jpclett.2c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The autoionization dynamics of superexcited superfluid He nanodroplets doped with Na atoms is studied by extreme-ultraviolet (XUV) time-resolved electron spectroscopy. Following excitation into the higher-lying droplet absorption band, the droplet relaxes into the lowest metastable atomic 1s2s 1,3S states from which interatomic Coulombic decay (ICD) takes place either between two excited He atoms or between an excited He atom and a Na atom attached to the droplet surface. Four main ICD channels are identified, and their decay times are determined by varying the delay between the XUV pulse and a UV pulse that ionizes the initial excited state and thereby quenches ICD. The decay times for the different channels all fall in the range of ∼1 ps, indicating that the ICD dynamics are mainly determined by the droplet environment. A periodic modulation of the transient ICD signals is tentatively attributed to the oscillation of the bubble forming around the localized He excitation.
Collapse
Affiliation(s)
- Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Rupert Michiels
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Ulrich Bangert
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Nicolas Sisourat
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, 75005 Paris, France
| | - Marcel Binz
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lukas Bruder
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | | | | | - Raimund Feifel
- Department of Physics, University of Gothenburg, 41133 Gothenburg, Sweden
| | - Luca Giannessi
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Richard J Squibb
- Department of Physics, University of Gothenburg, 41133 Gothenburg, Sweden
| | - Daniel Uhl
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Andreas Wituschek
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza TS, Italy
| | - Frank Stienkemeier
- Institute of Physics, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Briant M, Mestdagh JM, Gaveau MA, Poisson L. Reaction dynamics within a cluster environment. Phys Chem Chem Phys 2022; 24:9807-9835. [PMID: 35441619 DOI: 10.1039/d1cp05783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective article reviews experimental and theoretical works where rare gas clusters and helium nanodroplets are used as a nanoreactor to investigate chemical dynamics in a solvent environment. A historical perspective is presented first followed by specific considerations on the mobility of reactants within these reaction media. The dynamical response of pure clusters and nanodroplets to photoexcitation is shortly reviewed before examining the role of the cluster (or nanodroplet) degrees of freedom in the photodynamics of the guest atoms and molecules.
Collapse
Affiliation(s)
- Marc Briant
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | | | - Marc-André Gaveau
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
| | - Lionel Poisson
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.
| |
Collapse
|
7
|
Sen S, Mandal S, Sen A, Gopal R, Ben Ltaief L, Turchini S, Catone D, Zema N, Coreno M, Richter R, Mudrich M, Krishnan SR, Sharma V. Fragmentation dynamics of doubly charged camphor molecule following C 1s Auger decay. Phys Chem Chem Phys 2022; 24:2944-2957. [PMID: 35076648 DOI: 10.1039/d1cp05176h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fragmentation dynamics of the gas-phase, doubly charged camphor molecule, formed by Auger decay following carbon 1s ionisation, using soft X-ray synchrotron radiation, is presented in this work. The technique of velocity map imaging combined with a photoelectron-photoion-photoion coincidence (VMI-PEPIPICO) is used for both electron energy and ion momentum (in-sequence) measurements. The experimental study is complemented by molecular dynamics simulation, performed with an NVT (moles, volume, and temperature) ensemble. Velocity Verlet algorithms were used for time integration at various internal energies. These simulations validate observed dissociation pathways. From these, we successfully deduce that the internal energy of the doubly charged molecular ion has a significant contribution to the fragmentation mechanism. Notably, a prominent signature of the internal energy was observed in the experimentally determined energies of the neutral fragment in these deferred charge separation pathways, entailing a more detailed theoretical study to uncover the exact dissociation dynamics.
Collapse
Affiliation(s)
- Sanket Sen
- Indian Institute of Technology Hyderabad, Kandi 502285, India.
| | - S Mandal
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Arnab Sen
- Indian Institute of Science Education and Research, Pune 411008, India
| | - R Gopal
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | | | - S Turchini
- Istituto di Struttura della Materia - CNR (ISM-CNR), Area di Ricerca di Tor Vergata via del Fosso del Cavaliere, 100, Rome 00133, Italy
| | - D Catone
- Istituto di Struttura della Materia - CNR (ISM-CNR), Area di Ricerca di Tor Vergata via del Fosso del Cavaliere, 100, Rome 00133, Italy
| | - N Zema
- Istituto di Struttura della Materia - CNR (ISM-CNR), Area di Ricerca di Tor Vergata via del Fosso del Cavaliere, 100, Rome 00133, Italy
| | - M Coreno
- Elettra-Sincrotrone Trieste, Basovizza 34149, Italy.,Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, Trieste 34149, Italy
| | - R Richter
- Elettra-Sincrotrone Trieste, Basovizza 34149, Italy
| | - M Mudrich
- Aarhus University, 8000 Aarhus C, Denmark.,QuCenDiEM - group and Department of Physics, Indian Institute of Technology - Madras, Chennai 600036, India.
| | - S R Krishnan
- QuCenDiEM - group and Department of Physics, Indian Institute of Technology - Madras, Chennai 600036, India.
| | - V Sharma
- Indian Institute of Technology Hyderabad, Kandi 502285, India.
| |
Collapse
|
8
|
Mandal S, Gopal R, Srinivas H, D'Elia A, Sen A, Sen S, Richter R, Coreno M, Bapat B, Mudrich M, Sharma V, Krishnan SR. Coincident angle-resolved state-selective photoelectron spectroscopy of acetylene molecules: a candidate system for time-resolved dynamics. Faraday Discuss 2021; 228:242-265. [PMID: 33687396 DOI: 10.1039/d0fd00120a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The acetylene-vinylidene system serves as a benchmark for investigations of ultrafast dynamical processes where the coupling of the electronic and nuclear degrees of freedom provides a fertile playground to explore the femto- and sub-femto-second physics with coherent extreme-ultraviolet (EUV) photon sources both on the table-top as well as free-electron lasers. We focus on detailed investigations of this molecular system in the photon energy range 19-40 eV where EUV pulses can probe the dynamics effectively. We employ photoelectron-photoion coincidence (PEPICO) spectroscopy to uncover hitherto unrevealed aspects of this system. In this work, the role of excited states of the C2H2+ cation, the primary photoion, is specifically addressed. From photoelectron energy spectra and angular distributions, the nature of the dissociation and isomerization channels is discerned. Exploiting the 4π-collection geometry of the velocity map imaging spectrometer, we not only probe pathways where the efficiency of photoionization is inherently high but also perform PEPICO spectroscopy on relatively weak channels.
Collapse
Affiliation(s)
- S Mandal
- Indian Institute of Science Education and Research, Pune 411008, India
| | - R Gopal
- Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - H Srinivas
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - A D'Elia
- IOM-CNR, Laboratorio TASC, Basovizza SS-14, km 163.5, 34149 Trieste, Italy
| | - A Sen
- Indian Institute of Science Education and Research, Pune 411008, India
| | - S Sen
- Indian Institute of Technology Hyderabad, Kandi 502285, India.
| | - R Richter
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Italy
| | - M Coreno
- Istituto di Struttura della Materia - Consiglio Nazionale delle Ricerche (ISM-CNR), 34149 Trieste, Italy and INFN-LNF, via Enrico Fermi 54, 00044 Frascati, Italy
| | - B Bapat
- Indian Institute of Science Education and Research, Pune 411008, India
| | - M Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark and Department of Physics, QuCenDiEm-Group, Indian Institute of Technology Madras, Chennai 600036, India.
| | - V Sharma
- Indian Institute of Technology Hyderabad, Kandi 502285, India.
| | - S R Krishnan
- Department of Physics, QuCenDiEm-Group, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|