1
|
Li W, Zhou J, Lan Q, Ding XL, Pan XT, Ahmed SA, Ji LN, Wang K, Xia XH. Single-Molecule Electrical and Spectroscopic Profiling Protein Allostery Using a Gold Plasmonic Nanopore. NANO LETTERS 2023; 23:2586-2592. [PMID: 36942994 DOI: 10.1021/acs.nanolett.2c04848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct structural and dynamic characterization of protein conformers in solution is highly desirable but currently impractical. Herein, we developed a single molecule gold plasmonic nanopore system for observation of protein allostery, enabling us to monitor translocation dynamics and conformation transition of proteins by ion current detection and SERS spectrum measurement, respectively. Allosteric transition of calmodulin (CaM) was elaborately probed by the nanopore system. Two conformers of CaM were well-resolved at a single-molecule level using both the ion current blockage signal and the SERS spectra. The collected SERS spectra provided structural evidence to confirm the interaction between CaM and the gold plasmonic nanopore, which was responsible for the different translocation behaviors of the two conformers. SERS spectra revealed the amino acid residues involved in the conformational change of CaM upon calcium binding. The results demonstrated that the excellent spectral characterization furnishes a single-molecule nanopore technique with an advanced capability of direct structure analysis.
Collapse
Affiliation(s)
- Wang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Juan Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Lan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Saud Asif Ahmed
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Zhou J, Lan Q, Li W, Ji LN, Wang K, Xia XH. Single Molecule Protein Segments Sequencing by a Plasmonic Nanopore. NANO LETTERS 2023; 23:2800-2807. [PMID: 36927001 DOI: 10.1021/acs.nanolett.3c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Obtaining sequential and conformational information on proteins is vital to understand their functions. Although the nanopore-based electrical detection can sense single molecule (SM) protein and distinguish among different amino acids, this approach still faces difficulties in slowing down protein translocation and improving ionic current signal-to-noise ratio. Here, we observe the unfolding and multistep sequential translocation of SM cytochrome c (cyt c) through a surface enhanced Raman scattering (SERS) active conical gold nanopore. High bias voltage unfolds SM protein causing more exposure of amino acid residues to the nanopore, which slows down the protein translocation. Specific SERS traces of different SM cyt c segments are then recorded sequentially when they pass through the hotspot inside the gold nanopore. This study shows that the combination of SM SERS with a nanopore can provide a direct insight into protein segments and expedite the development of nanopore toward SM protein sequencing.
Collapse
Affiliation(s)
- Juan Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Lan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Na Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Hu G, Yan H, Xi G, Gao Z, Wu Z, Lu Z, Tu J. Nanopore sensors for single molecular protein detection: Research progress based on computer simulations. IET Nanobiotechnol 2023; 17:257-268. [PMID: 36924083 DOI: 10.1049/nbt2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As biological macromolecules, proteins are involved in important cellular functions ranging from DNA replication and biosynthesis to metabolic signalling and environmental sensing. Protein sequencing can help understand the relationship between protein function and structure, and provide key information for disease diagnosis and new drug design. Nanopore sensors are a novel technology to achieve the goal of label-free and high-throughput protein sequencing. In recent years, nanopore-based biosensors have been widely used in the detection and analysis of biomolecules such as DNA, RNA, and proteins. At the same time, computer simulations can describe the transport of proteins through nanopores at the atomic level. This paper reviews the applications of nanopore sensors in protein sequencing over the past decade and the solutions to key problems from a computer simulation perspective, with the aim of pointing the way to the future of nanopore protein sequencing.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhuwei Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ziqing Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Zeng X, Xiang Y, Liu Q, Wang L, Ma Q, Ma W, Zeng D, Yin Y, Wang D. Nanopore Technology for the Application of Protein Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1942. [PMID: 34443773 PMCID: PMC8400292 DOI: 10.3390/nano11081942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/19/2023]
Abstract
Protein is an important component of all the cells and tissues of the human body and is the material basis of life. Its content, sequence, and spatial structure have a great impact on proteomics and human biology. It can reflect the important information of normal or pathophysiological processes and promote the development of new diagnoses and treatment methods. However, the current techniques of proteomics for protein analysis are limited by chemical modifications, large sample sizes, or cumbersome operations. Solving this problem requires overcoming huge challenges. Nanopore single molecule detection technology overcomes this shortcoming. As a new sensing technology, it has the advantages of no labeling, high sensitivity, fast detection speed, real-time monitoring, and simple operation. It is widely used in gene sequencing, detection of peptides and proteins, markers and microorganisms, and other biomolecules and metal ions. Therefore, based on the advantages of novel nanopore single-molecule detection technology, its application to protein sequence detection and structure recognition has also been proposed and developed. In this paper, the application of nanopore single-molecule detection technology in protein detection in recent years is reviewed, and its development prospect is investigated.
Collapse
Affiliation(s)
- Xiaoqing Zeng
- Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China; (X.Z.); (Y.X.); (W.M.)
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yang Xiang
- Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China; (X.Z.); (Y.X.); (W.M.)
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Qianshan Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Qianyun Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Wenhao Ma
- Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, China; (X.Z.); (Y.X.); (W.M.)
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Delin Zeng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yajie Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (Q.L.); (L.W.); (Q.M.); (D.Z.)
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|