1
|
Bhattacharjee I, Wang L, Gonzalez-Sanchis N, Milián-Medina B, Ballesteros R, Wannemacher R, Ballesteros-Garrido R, Gierschner J. 1,6-Diazapyrene: A Novel, Well-Defined, Small-Size Prototype System for Nitrogen-Containing PAHs. J Phys Chem A 2025; 129:4471-4479. [PMID: 40353768 DOI: 10.1021/acs.jpca.5c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The quest for nitrogen-doped (N-doped) polycyclic aromatic hydrocarbons (PAHs) requires well-defined prototype systems to understand the relationship between the structure and the resulting photophysical and photochemical properties. To this end, a novel, simple, and small compound, 1,6-diazapyrene, was synthesized. In-depth analysis, employing optical spectroscopy and (time-dependent) density functional theory, (TD-)DFT, elucidates the optical excitations on the basis of MO symmetry, energy, and topology considerations; the study further unveils the photophysical and photochemical deactivation kinetics after photoexcitation, revealing extreme changes against pyrene as well as against the well-known 2,7-diazapyrene isomer. The high sensitivity of the aza-substitution position to generate such changes is considered as highly relevant for the targeted design of N-doped PAHs in general.
Collapse
Affiliation(s)
- Indranil Bhattacharjee
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - Liangxuan Wang
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Nerea Gonzalez-Sanchis
- Department for Organic Chemistry, Faculty of Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Begoña Milián-Medina
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Rafael Ballesteros
- Department for Organic Chemistry, Faculty of Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Reinhold Wannemacher
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - Rafael Ballesteros-Garrido
- Department for Organic Chemistry, Faculty of Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
2
|
F Dos Santos LG, Chagas JCV, Nieman R, Aquino AJA, Machado FBC, Lischka H. Charge transfer within excited states of boron/nitrogen doped polycyclic aromatic hydrocarbons. Phys Chem Chem Phys 2025. [PMID: 40395002 DOI: 10.1039/d5cp00618j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in scientific research due to their unique electronic properties and potential applications in various fields such as photovoltaics and photocatalysis. In this study, the excited states and intramolecular charge transfer mechanisms within boron/nitrogen (B/N) doped PAHs using a 5-armchair,5-zig-zag periacene as model were investigated. Starting with a pristine periacene sheet, twelve chemically modified structures were explored, with different topologies of boron and nitrogen doping. Geometry optimization calculations in the ground state were performed at the ωB97XD/def2-SV(P) level, followed by single-point calculations of the low-lying singlet excited states using multireference MR-CISD and SC-NEVPT2 methods and single reference (SR) ADC(2) and TD-DFT theories for comparison. The analysis of energy spectra and charge transfer (CT) character were conducted using the one particle density matrices, analyzing the involved natural transition orbitals (NTOs) and through the decomposition of the states into contributions of local excitations (LE), charge transfer (CT) or double excitations (2-el.) A S1 CT state was characterized for three of the suggested doped PAHs. Interestingly, in one of these cases, the CT state was dominated by a double excitation character. Beyond this case, it turned out that most of the other excitations also have a strong double excitation component. This fact makes MR calculations highly desirable for accurate investigations, as SR methods such as ADC(2) and TD-DFT become questionable in many cases.
Collapse
Affiliation(s)
- Luan G F Dos Santos
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| | - Julio C V Chagas
- Departamento de Química, Instituto Tecnológico de Aeronáutica, 12228-900, São José dos Campos, SP, Brazil.
- Laboratório de Computação Científica Avançada e Modelamento (Lab - CCAM), Instituto Tecnológico da Aeronáutica, 12228-900, José dos Campos, São Paulo, Brazil
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| | - Adelia J A Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Francisco B C Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, 12228-900, São José dos Campos, SP, Brazil.
- Laboratório de Computação Científica Avançada e Modelamento (Lab - CCAM), Instituto Tecnológico da Aeronáutica, 12228-900, José dos Campos, São Paulo, Brazil
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA.
| |
Collapse
|
3
|
Sturm F, Herok C, Fischer I. Non-Radiative Deactivation in Isolated Quinoline. J Phys Chem A 2024; 128:8421-8427. [PMID: 39303210 DOI: 10.1021/acs.jpca.4c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The photophysics of the S2 1(ππ*) state of the polycyclic aromatic nitrogen-containing hydrocarbon (PANH) quinoline is investigated in a free jet using a picosecond laser system. A [1 + 1] multiphoton ionization spectrum yields the S2 origin at around 32 200 cm-1 and reveals several vibronic bands. In time-resolved experiments, quinoline is then excited between 312.2 and 279.7 nm. Probe wavelengths of 351 and 263.5 nm are employed. The dynamics is monitored by time-resolved photoelectron imaging. The images reveal a short-lived band at high electron kinetic energies with a ps lifetime and a band at lower electron kinetic energies that shows an offset at long delay times. In comparison with previous work, the offset is assigned to ionization from the T1 state. Lifetimes decrease from 45 ps at the S2 origin to 11 ps at +3550 cm-1. Most likely, the S2 1(ππ*) state deactivates by internal conversion to the S1 1(nπ*) state, followed by intersystem crossing to the triplet manifold.
Collapse
Affiliation(s)
- Floriane Sturm
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christoph Herok
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
4
|
Tuchin VS, Stepanidenko EA, Vedernikova AA, Cherevkov SA, Li D, Li L, Döring A, Otyepka M, Ushakova EV, Rogach AL. Optical Properties Prediction for Red and Near-Infrared Emitting Carbon Dots Using Machine Learning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310402. [PMID: 38342667 DOI: 10.1002/smll.202310402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Indexed: 02/13/2024]
Abstract
Functional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches. Here, the dataset on synthetic parameters and optical properties of one important class of light-emitting nanomaterials - carbon dots are collected, processed, and analyzed with optical transitions in the red and near-infrared spectral ranges. A model for prediction of spectral characteristics of these carbon dots based on multiple linear regression is established and verified by comparison of the predicted and experimentally observed optical properties of carbon dots synthesized in three different laboratories. Based on the analysis, the open-source code is provided to be used by researchers for the prediction of optical properties of carbon dots and their synthetic procedures.
Collapse
Affiliation(s)
- Vladislav S Tuchin
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg, 197101, Russia
| | - Evgeniia A Stepanidenko
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg, 197101, Russia
| | - Anna A Vedernikova
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg, 197101, Russia
| | - Sergei A Cherevkov
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg, 197101, Russia
| | - Di Li
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Lei Li
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Aaron Döring
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Michal Otyepka
- IT4Innovations. VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 70800, Czech Republic
- Regional Centre of Advanced Technologies and Materials (RCPTM), Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 78371, Czech Republic
| | - Elena V Ushakova
- International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg, 197101, Russia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- IT4Innovations. VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 70800, Czech Republic
| |
Collapse
|
5
|
Sturm F, Philipp LN, Flock M, Fischer I, Mitric R. The Electronic Structures of Azaphenanthrenes and Their Dimers. J Phys Chem A 2024; 128:1250-1259. [PMID: 38345912 DOI: 10.1021/acs.jpca.3c07740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Insertion of a nitrogen atom modifies the electronic structures and photochemistry of polycyclic aromatic hydrocarbons by introducing nπ* states into the molecules. To better understand the electronic structures of isolated polycyclic aromatic nitrogen-containing hydrocarbons (PANHs) and their dimers as well as the influence of the position of the nitrogen atom in the molecule, we investigate three different azaphenanthrenes, benzo[f]quinoline, benzo[h]quinoline, and phenanthridine, in a joint experimental and computational study. Experimentally, resonance-enhanced multiphoton ionization (REMPI) spectroscopy is applied to characterize the excited electronic states. The REMPI spectra of the azaphenanthrene monomers have a rather similar appearance, with origins between 3.645 and 3.670 eV for the 1ππ* ← S0 transition. In contrast to the phenanthrene parent, 2ππ* ← S0 is broad and unstructured even at the band origin. The experiments are accompanied by density functional theory computation, and vibrationally resolved spectra are simulated using a time-independent approach. The differences between phenanthrene and the azaphenanthrenes are assigned to perturbations due to the low-lying 1(nπ*) state, which accelerates nonradiative deactivation. For the dimers, it is found that two π-stacked isomers with two electronic transitions each contribute to the electronic spectrum, leading to overlapping bands that are difficult to assign.
Collapse
Affiliation(s)
- F Sturm
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - L N Philipp
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - M Flock
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - I Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - R Mitric
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| |
Collapse
|
6
|
Dai Y, Rambaldi F, Negri F. Eclipsed and Twisted Excimers of Pyrene and 2-Azapyrene: How Nitrogen Substitution Impacts Excimer Emission. Molecules 2024; 29:507. [PMID: 38276585 PMCID: PMC11154402 DOI: 10.3390/molecules29020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Due to their unique photophysical and electronic properties, pyrene and its analogues have been the subject of extensive research in recent decades. The propensity of pyrene and its derivatives to form excimers has found wide application in various fields. Nitrogen-substituted pyrene derivatives display similar photophysical properties, but for them, excimer emission has not been reported to date. Here, we use time-dependent density functional theory (TD-DFT) calculations to investigate the low-lying exciton states of dimers of pyrene and 2-azapyrene. The excimer equilibrium structures are determined and the contribution of charge transfer (CT) excitations and intermolecular interactions to the exciton states is disclosed using a diabatization procedure. The study reveals that the dimers formed by the two molecules have quite similar exciton-state patterns, in which the relevant CT contributions govern the formation of excimer states, along with the La/Lb state inversion. In contrast with pyrene, the dipole-dipole interactions in 2-azapyrene stabilize the dark eclipsed excimer structure and increase the barrier for conversion into a bright twisted excimer. It is suggested that these differences in the nitrogen-substituted derivative might influence the excimer emission properties.
Collapse
Affiliation(s)
- Yasi Dai
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (Y.D.); (F.R.)
- Center for Chemical Catalysis—C3, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Filippo Rambaldi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (Y.D.); (F.R.)
| | - Fabrizia Negri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (Y.D.); (F.R.)
- Center for Chemical Catalysis—C3, Alma Mater Studiorum—Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Research Unit of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Martín Santa Daría A, González-Sánchez L, Gómez S. Coronene: a model for ultrafast dynamics in graphene nanoflakes and PAHs. Phys Chem Chem Phys 2023; 26:174-184. [PMID: 37811951 DOI: 10.1039/d3cp03656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Assuming a delta pulse excitation, quantum wavepackets are propagated on the excited state manifold in the energy range from 3.4-5.0 eV for coronene and 2.4-3.5 eV for circumcoronene to study the time evolution of the states as well as their lifetimes. The full-dimensional (102 and 210 degrees of freedom for coronene and circumcoronene respectively) non-adiabatic dynamics simulated with the ML-MCTDH method on twelve coupled singlet electronic states show that the different absorption spectra are only due to electronic delocalisation effects that change the excited state energies, but the structural dynamics in both compounds are identical. Breathing and tilting motions drive the decay dynamics of the electronic states away from the Frank-Condon region independently of the size of the aromatic system. This promising result allows the use of coronene as a model system for the dynamics of larger polycyclic aromatic hydrocarbons (PAHs) and graphene one dimensional sheets or nanoflakes.
Collapse
Affiliation(s)
| | | | - Sandra Gómez
- Departamento de Química Física, Universidad de Salamanca, Spain.
| |
Collapse
|
8
|
Olla C, Ricci PC, Chiriu D, Fantauzzi M, Casula MF, Mocci F, Cappai A, Porcu S, Stagi L, Carbonaro CM. Selecting molecular or surface centers in carbon dots-silica hybrids to tune the optical emission: A photo-physics study down to the atomistic level. J Colloid Interface Sci 2023; 634:402-417. [PMID: 36542970 DOI: 10.1016/j.jcis.2022.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
In this work, we unveil the fluorescence features of citric acid and urea-based Carbon Dots (CDs) through a photo-physical characterization of nanoparticles synthesized, under solvent-free and open-air conditions, within silica-ordered mesoporous silica, as a potential host for solid-state emitting hybrids. Compared to CDs synthesized without silica matrices and dispersed in water, silica-CD hybrids display a broader emission in the green range whose contribution can be increased by UV and blue laser irradiation. The analysis of hybrids synthesized within different silica (MCM-48 and SBA-15) calls for an active role of the matrix in directing the synthesis toward the formation of CDs with a larger content of graphitic N and imidic groups at the expense of N-pyridinic molecules. As a result, CDs tuned in size and with a larger green emission are obtained in the hybrids and are retained once extracted from the silica matrix and dispersed in water. The kinetics of the photo-physics under UV and blue irradiation of hybrid samples show a photo-assisted formation process leading to a further increase of the relative contribution of the green emission, not observed in the water-dispersed reference samples, suggesting that the porous matrix is involved also in the photo-activated process. Finally, we carried out DFT and TD-DFT calculations on the interaction of silica with selected models of CD emitting centers, like surface functional groups (OH and COOH), dopants (graphitic N), and citric acid-based molecules. The combined experimental and theoretical results clearly indicate the presence of molecular species and surface centers both emitting in the blue and green spectral range, whose relative contribution is tuned by the interaction with the surrounding media.
Collapse
Affiliation(s)
- Chiara Olla
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy.
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Daniele Chiriu
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Marzia Fantauzzi
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy
| | - Maria Francesca Casula
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, I-09123 Cagliari, Italy
| | - Francesca Mocci
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy
| | - Antonio Cappai
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Stefania Porcu
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Luigi Stagi
- Department of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | | |
Collapse
|
9
|
Miao X, Preitschopf T, Sturm F, Fischer I, Lemmens AK, Limbacher M, Mitric R. Stacking Is Favored over Hydrogen Bonding in Azaphenanthrene Dimers. J Phys Chem Lett 2022; 13:8939-8944. [PMID: 36135713 DOI: 10.1021/acs.jpclett.2c02280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
N-Doped polycyclic aromatic hydrocarbons have recently emerged as potential organic electronic materials. The function of such materials is determined not only by the intrinsic electronic properties of individual molecules but also by their supramolecular interactions in the solid state. Therefore, a proper characterization of the interactions between the individual units is of interest to materials science since they ultimately govern properties such as excitons and charge transfer. Here, we report a joint experimental and computational study of two azaphenanthrene dimers to determine the structure and the nature of supramolecular interactions in the aggregates. IR/UV double-resonance experiments were carried out using far- and mid-infrared free-electron laser radiation. The experimental spectra are compared with quantum chemical calculations for the lowest-energy π-stacked and hydrogen-bonded structures. The data reveal a preference of the π-stacked structure for the benzo[f]quinoline and the phenanthridine dimer.
Collapse
Affiliation(s)
- Xincheng Miao
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Floriane Sturm
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Alexander K Lemmens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| | - Moritz Limbacher
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Roland Mitric
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
10
|
Mocci F, de Villiers Engelbrecht L, Olla C, Cappai A, Casula MF, Melis C, Stagi L, Laaksonen A, Carbonaro CM. Carbon Nanodots from an In Silico Perspective. Chem Rev 2022; 122:13709-13799. [PMID: 35948072 PMCID: PMC9413235 DOI: 10.1021/acs.chemrev.1c00864] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon nanodots (CNDs) are the latest and most shining rising stars among photoluminescent (PL) nanomaterials. These carbon-based surface-passivated nanostructures compete with other related PL materials, including traditional semiconductor quantum dots and organic dyes, with a long list of benefits and emerging applications. Advantages of CNDs include tunable inherent optical properties and high photostability, rich possibilities for surface functionalization and doping, dispersibility, low toxicity, and viable synthesis (top-down and bottom-up) from organic materials. CNDs can be applied to biomedicine including imaging and sensing, drug-delivery, photodynamic therapy, photocatalysis but also to energy harvesting in solar cells and as LEDs. More applications are reported continuously, making this already a research field of its own. Understanding of the properties of CNDs requires one to go to the levels of electrons, atoms, molecules, and nanostructures at different scales using modern molecular modeling and to correlate it tightly with experiments. This review highlights different in silico techniques and studies, from quantum chemistry to the mesoscale, with particular reference to carbon nanodots, carbonaceous nanoparticles whose structural and photophysical properties are not fully elucidated. The role of experimental investigation is also presented. Hereby, we hope to encourage the reader to investigate CNDs and to apply virtual chemistry to obtain further insights needed to customize these amazing systems for novel prospective applications.
Collapse
Affiliation(s)
- Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,
| | | | - Chiara Olla
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Antonio Cappai
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Maria Francesca Casula
- Department
of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, IT 09123 Cagliari, Italy
| | - Claudio Melis
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Luigi Stagi
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Aatto Laaksonen
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden,State Key
Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China,Centre
of Advanced Research in Bionanoconjugates and Biopolymers, PetruPoni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda 41A, 700487 Iasi, Romania,Division
of Energy Science, Energy Engineering, Luleå
University of Technology, Luleå 97187, Sweden,
| | | |
Collapse
|
11
|
Spada RFK, Franco MP, Nieman R, Aquino AJA, Shepard R, Plasser F, Lischka H. Spin-density calculation via the graphical unitary group approach. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2091049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Rene F. K. Spada
- Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil
| | - Maurício P. Franco
- Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Adelia J. A. Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Ron Shepard
- Argonne National Laboratory, Chemical Sciences and Engineering Division, Lemont, IL, USA
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire, UK
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
12
|
Liu B, Aquino AJA, Nachtigallová D, Lischka H. Doping Capabilities of Fluorine on the UV Absorption and Emission Spectra of Pyrene-Based Graphene Quantum Dots. J Phys Chem A 2020; 124:10954-10966. [PMID: 33325716 DOI: 10.1021/acs.jpca.0c08694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functionalization of quantum carbon dots (QCDs) and graphene quantum dots (GQDs) is a popular way to tune their optical spectra increasing their potential applicability in material science and biorelated disciplines. Based on the experimental observation, functionalization by fluorine atoms induces substantial shifts in absorption and emission spectra and an intensity increase. Understanding of the effects due to fluorine functionalization at the atomic scale level is still challenging due to the complex structure of fluorinated QCDs. In this work, the effect of covalent edge-fluorination and fluorine anion doping on absorption and emission spectra of prototypical polycyclic aromatic hydrocarbons pyrene and circum-pyrene has been investigated. The ways to achieve efficient red-shifts in the UV spectra and obtaining reasonable intensities stood in the focus of the work. High-level quantum chemical methods based on density functional theory/multireference configuration interaction (DFT/MRCI) and single-reference second-order algebraic diagrammatic construction (ADC(2)) and density functional theory (DFT) using the CAM-B3LYP functional have been used for this purpose. The calculations show that doping with the fluoride anion can have significant effects on the electronic spectrum. However, the effect of the fluoride ion is strongly dependent on its position with respect to the QCD. The localization above the GQDs causes large red-shifts to both the absorption and emission of spectra of GQDs, while in-plane localization leads to only negligible shifts and a tendency to dissociation after electronic excitation. Thus, large red-shifts, observed in complexes with F-, are obtained due to the introduction of new excited states with large CT character not yet been considered previously in this context, although they have the potential to significantly influence the photophysics of quantum dots. Doping by edge fluorination redshifts the spectra only slightly. This study provides insights on fluorine-doped GQDs, which is conducive to promoting its rational design and controllable synthesis.
Collapse
Affiliation(s)
- Bo Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Adelia J A Aquino
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.,Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Dana Nachtigallová
- Regional Centre of Advanced Technologies and Materials, Palacky' University, 78371 Olomouc, Czech Republic.,Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo na'm. 2, 16610 Prague 6, Czech Republic
| | - Hans Lischka
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|