1
|
Koverga V, Juhász Á, Dudariev D, Lebedev M, Idrissi A, Jedlovszky P. Local Structure of DMF-Water Mixtures, as Seen from Computer Simulations and Voronoi Analysis. J Phys Chem B 2022; 126:6964-6978. [PMID: 36044401 DOI: 10.1021/acs.jpcb.2c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations of mixtures of N,N-dimethylformamide (DMF) with water of various compositions, covering the entire composition range, are performed on the canonical (N,V,T) ensemble. The local structure of the mixtures is analyzed in terms of radial distribution functions and the contributions of the first five neighbors to them, various order parameters of the water molecules around each other, and properties of the Voronoi polyhedra of the molecules. The analyses lead to the following main conclusions. The two molecules are mixing with each other even on the molecular scale; however, small self-aggregates of both components persist even at their small mole fraction values. In particular, water-water H-bonds exist in the entire composition range, while water clusters larger than 3 and 2 molecules disappear above the DMF mole fraction values of about 0.7 and 0.9, respectively. The O atoms of the DMF molecules can well replace water O atoms in the hydrogen-bonding network. Further, the H-bonding structure is enhanced by the presence of the hydrophobic CH3 groups of the DMF molecules. On the other hand, the H-bonding network of the molecules gradually breaks down upon the addition of DMF to the system due to the lack of H-donating groups of the DMF molecules. Finally, in neat DMF, the molecules form weak, CH-donated H-bonds with each other; however, these H-bonds disappear upon the addition of water due to the increasing competition with the considerably stronger OH-donated H-bonds DMF can form with the water molecules.
Collapse
Affiliation(s)
- Volodymyr Koverga
- University of Lille, CNRS UMR 8516 - LASIRe─Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France
| | - Ákos Juhász
- University of Lille, CNRS UMR 8516 - LASIRe─Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France.,Department of Biophysics Radiation Biology, Laboratory of Nanochemistry, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Dmytro Dudariev
- University of Lille, CNRS UMR 8516 - LASIRe─Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France.,Department of Inorganic Chemistry, V.N. Karazin Kharkiv National University, Svoboda sq. 4, 61022 Kharkiv, Ukraine
| | - Maxim Lebedev
- University of Lille, CNRS UMR 8516 - LASIRe─Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France.,Department of Inorganic Chemistry, Laboratory of Luminescent Molecular Devices, Ivanovo State University of Chemistry and Technology, Sheremetievskiy Avenue 7, Ivanovo 153000, Russia
| | - Abdenacer Idrissi
- University of Lille, CNRS UMR 8516 - LASIRe─Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka u. 6, 3300 Eger, Hungary
| |
Collapse
|
2
|
Higashino S, Takeuchi Y, Miyake M, Ikenoue T, Tane M, Hirato T. Tungsten(II) Chloride Hydrates with High Solubility in Chloroaluminate Ionic Liquids for the Electrodeposition of Al–W Alloy Films. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Hydrogen Bonds: Raman Spectroscopic Study. Int J Mol Sci 2021; 22:ijms22105380. [PMID: 34065358 PMCID: PMC8161095 DOI: 10.3390/ijms22105380] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
The work outlines general ideas on how the frequency and the intensity of proton vibrations of X–H···Y hydrogen bonding are formed as the bond evolves from weak to maximally strong bonding. For this purpose, the Raman spectra of different chemical compounds with moderate, strong, and extremely strong hydrogen bonds were obtained in the temperature region of 5 K–300 K. The dependence of the proton vibrational frequency is schematically presented as a function of the rigidity of O-H···O bonding. The problems of proton dynamics on tautomeric O–H···O bonds are considered. A brief description of the N–H···O and C–H···Y hydrogen bonds is given.
Collapse
|
6
|
Honti B, Idrissi A, Jedlovszky P. Calculation of the Free Energy of Mixing as a Tool for Assessing and Improving Potential Models: The Case of the N, N-Dimethylformamide-Water System. J Phys Chem B 2021; 125:4819-4830. [PMID: 33947181 DOI: 10.1021/acs.jpcb.1c01749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Helmholtz free energy, energy, and entropy of mixing of N,N-dimethylformamide (DMF) and water are calculated in the entire composition range by means of Monte Carlo computer simulations and thermodynamic integration using all possible combinations of five DMF and three widely used water models. Our results reveal that the mixing of DMF and water is highly non-ideal. Thus, in their dilute solutions, both molecules induce structural ordering of the major component, as evidenced by the concomitant decrease in the entropy. Among the 15 model combinations considered, only 4 reproduce the well-known full miscibility of DMF and water, 3 of which strongly exaggerate the thermodynamic driving force of the miscibility. Thus, the combination of the CS2 model of DMF and the TIP4P/2005 water model reproduces the properties of the DMF-water mixtures far better than the other combinations tested. Our results also reveal that moving a fractional negative charge from the N atom to the O atom of the DMF molecule, leading to the increase in its dipole moment, improves the miscibility of the model with water. Starting from the CS2 model and optimizing the charge to be moved, we propose a new model of DMF that reproduces very accurately both the Helmholtz free energy of mixing of aqueous DMF solutions in the entire composition range (when used in combination with the TIP4P/2005 water model) and also the internal energy of neat DMF.
Collapse
Affiliation(s)
- Barbara Honti
- Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary
| | - Abdenacer Idrissi
- CNRS, UMR 8516-LASIRe-Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, University of Lille, F-5900 Lille, France
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|