1
|
Inoue R, Sumitani R, Honda H, Kuwahara D, Goo ZL, Sugimoto K, Mochida T. Organometallic Ionic Plastic Crystals Incorporating Cationic Half-Sandwich Complexes. Inorg Chem 2024; 63:14770-14778. [PMID: 39056552 DOI: 10.1021/acs.inorgchem.4c02523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ionic plastic crystals (IPCs), characterized by nearly spherical molecular ions, exhibit remarkable solid-state characteristics including high ionic conductivity. However, most IPCs are organic onium salts. Incorporating organometallic half-sandwich complexes into IPCs is challenging owing to their low-symmetry structures. This paper introduces a novel series of IPCs composed of salts derived from half-sandwich organometallic complexes. We synthesized five salts of [Ru(Cp)(tmeda)(CO)]X (tmeda = N,N,N',N'-tetramethyl-1,2-ethanediamine, X = anion) with different anions and examined their phase behavior, crystal structures, and molecular motion in the solid-state. Salts featuring the CPFSA (= 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide), B(CN)4-, and FSA- (= (FSO2)2N-) anions underwent phase transitions to an IPC phase with a CsCl-type structure in the temperature range of 327-364 K. Employing smaller anions led to an increase in the transition temperature. In each salt, the coordination number, representing the number of anions surrounding one cation, remained eight in IPC and low-temperature phases. However, salts containing smaller anions (CF3BF3- and PF6-) displayed a rotator phase rather than the IPC phase. In these cases, the coordination numbers were six at low temperatures.
Collapse
Affiliation(s)
- Ryota Inoue
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Ryo Sumitani
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Hisashi Honda
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Daisuke Kuwahara
- Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Zi Lang Goo
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kunihisa Sugimoto
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Tomoyuki Mochida
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
2
|
Mochida T. Organometallic Ionic Liquids Containing Sandwich Complexes: Molecular Design, Physical Properties, and Chemical Reactivities. CHEM REC 2023; 23:e202300041. [PMID: 37010446 DOI: 10.1002/tcr.202300041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Indexed: 04/04/2023]
Abstract
Ionic liquids (ILs) are salts with low melting points and are useful as electrolytes and solvents. We have developed ILs containing cationic metal complexes, which form a family of functional liquids that exhibit unique physical properties and chemical reactivities originating from metal complexes. Our study explores the liquid chemistry in the field of coordination chemistry, where solid-state chemistry is currently the main focus. This review describes the molecular design, physical properties, and reactivities of organometallic ILs containing sandwich or half-sandwich complexes. This paper mainly covers stimuli-responsive ILs, whose magnetic properties, solvent polarities, colors, or structures change by the application of external fields, such as light, heat, and magnetic fields, or by reaction with coordinating molecules.
Collapse
Affiliation(s)
- Tomoyuki Mochida
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
3
|
Casimiro A, Lugger J, Lub J, Nijmeijer K. Non-Globular Organic Ionic Plastic Crystal Containing a Crown-Ether Moiety - Tuning Its Behaviour Using Sodium Salts. Chemphyschem 2022; 23:e202200258. [PMID: 35561265 PMCID: PMC9400962 DOI: 10.1002/cphc.202200258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Organic ionic plastic crystals (OIPCs) are a class of soft materials showing positional order while still allowing orientational freedom. Due to their motional freedom in the solid state, they possess plasticity, non-flammability and high ionic conductivity. OIPC behavior is typically exhibited by 'simple' globular molecules allowing molecular rotation, whereas the interactions that govern the formation of OIPC phases in complex non-globular molecules are less understood. To better understand these interactions, a new family of non-globular OIPCs containing a 15-crown-5 ether moiety was synthetized and characterized. The 15C5BA molecule prepared does not exhibit the sought-after behavior because of its non-globular nature and strong intermolecular H-bonds that restrict orientational motion. However, the OIPC behavior was successfully obtained through complexation of the crown-ether moiety with sodium salts containing chaotropic anions. Those anions weaken the interactions between the molecules, allowing rotational freedom and tuning of the thermal and morphological properties of the OIPC.
Collapse
Affiliation(s)
- Anna Casimiro
- Membrane Materials and ProcessesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Jody Lugger
- Membrane Materials and ProcessesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Johan Lub
- Stimuli-responsive Functional Materials and DevicesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Kitty Nijmeijer
- Membrane Materials and ProcessesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|