1
|
Pecoraro A, Muñoz-García AB, Sannino GV, Veneri PD, Pavone M. Exotic hexagonal NaCl atom-thin layer on methylammonium lead iodide perovskite: new hints for perovskite solar cells from first-principles calculations. Phys Chem Chem Phys 2024; 26:1602-1607. [PMID: 38165025 DOI: 10.1039/d3cp02712k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Alkali halides are simple inorganic compounds extensively used as surface modifiers in optoelectronic devices. In perovskite solar cells (PSCs), they act as interlayers between the light absorber material and the charge selective layers improving their contact quality. They introduce surface dipoles that enable the fine tuning of the relative band alignment and passivate surface defects, a well-known drawback of hybrid organic-inorganic perovskites, that is responsible for most of the issues hampering the long-term performances. Reducing the thickness of such salt-based insulating layer might be beneficial in terms of charge transfer between the perovskite and the electron/hole transport layers. In this context, here we apply density functional theory (DFT) to characterize the structure and the electronic features of atom-thin layers of NaCl adsorbed on the methylammonium lead iodide (MAPI) perovskite. We analyze two different models of MAPI surface terminations and find unexpected structural reconstructions arising at the interface. Unexpectedly, we find an exotic honeycomb-like structuring of the salt, also recently observed in experiments on a diamond substrate. We also investigate how the salt affects the perovskite electronic properties that are key to control the charge dynamics at the interface. Moreover, we also assess the salt ability to improve the defect tolerance of the perovskite surface. With these results, we derive new hints regarding the potential benefits of using an atom-thin layer of alkali halides in PSCs.
Collapse
Affiliation(s)
- Adriana Pecoraro
- Department of Physics "E. Pancini", University of Naples Federico II, Napoli, Italy.
- INSTM-GISEL, National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy.
| | - Ana B Muñoz-García
- Department of Physics "E. Pancini", University of Naples Federico II, Napoli, Italy.
- INSTM-GISEL, National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy.
| | - Gennaro V Sannino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici (NA), Italy
| | - Paola Delli Veneri
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici (NA), Italy
| | - Michele Pavone
- INSTM-GISEL, National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy.
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
2
|
Heidrich R, Heinze KL, Berwig S, Ge J, Scheer R, Pistor P. Impact of dynamic co-evaporation schemes on the growth of methylammonium lead iodide absorbers for inverted solar cells. Sci Rep 2022; 12:19167. [DOI: 10.1038/s41598-022-23132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractA variety of different synthesis methods for the fabrication of solar cell absorbers based on the lead halide perovskite methylammonium lead iodide (MAPbI3, MAPI) have been successfully developed in the past. In this work, we elaborate upon vacuum-based dual source co-evaporation as an industrially attractive processing technology. We present non-stationary processing schemes and concentrate on details of co-evaporation schemes where we intentionally delay the start/end points of one of the two evaporated components (MAI and PbI2). Previously, it was found for solar cells based on a regular n-i-p structure, that the pre-evaporation of PbI$$_2$$
2
is highly beneficial for absorber growth and solar cell performance. Here, we apply similar non-stationary processing schemes with pre/post-deposition sequences for the growth of MAPI absorbers in an inverted p-i-n solar cell architecture. Solar cell parameters as well as details of the absorber growth are compared for a set of different evaporation schemes. Contrary to our preliminary assumptions, we find the pre-evaporation of PbI2 to be detrimental in the inverted configuration, indicating that the beneficial effect of the seed layers originates from interface properties related to improved charge carrier transport and extraction across this interface rather than being related to an improved absorber growth. This is further evidenced by a performance improvement of inverted solar cell devices with pre-evaporated MAI and post-deposited PbI2 layers. Finally, we provide two hypothetical electronic models that might cause the observed effects.
Collapse
|
3
|
Pecoraro A, Maddalena P, Pavone M, Muñoz García AB. First-Principles Study of Cu-Based Inorganic Hole Transport Materials for Solar Cell Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5703. [PMID: 36013837 PMCID: PMC9413571 DOI: 10.3390/ma15165703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Perovskite solar cells (PSCs) and dye-sensitized solar cells (DSCs) both represent promising strategies for the sustainable conversion of sunlight into electricity and fuels. However, a few flaws of current devices hinder the large-scale establishment of such technologies. On one hand, PSCs suffer from instabilities and undesired phenomena mostly linked to the perovskite/hole transport layer (HTL) interface. Most of the currently employed organic HTL (e.g., Spiro-OMeTAD) are supposed to contribute to the perovskite decomposition and to be responsible for charge recombination processes and polarization barriers. On the other hand, power conversion efficiencies (PCEs) of DSCs are still too low to compete with other conversion technologies. Tandem cells are built by assembling p-type and n-type DSCs in a cascade architecture and, since each dye absorbs on a different portion of the solar spectrum, the harvesting window is increased and the theoretical efficiency limit for a single chromophore (i.e., the Shockley-Queisser limit) is overcome. However, such a strategy is hindered by the lack of a p-type semiconductor with optimal photocathode features. Nickel oxide has been, by far, the first-choice inorganic p-type semiconductor for both PV technologies, but its toxicity and non-optimal features (e.g., too low open circuit voltage and the presence of trap states) call for alternatives. Herein, we study of three p-type semiconductors as possible alternative to NiO, namely CuI, CuSCN and Cu2O. To this aim, we compare the structural and electronic features of the three materials by means of a unified theoretical approach based on the state-of-the art density functional theory (DFT). We focus on the calculation of their valence band edge energies and compare such values with those of two widely employed photo-absorbers, i.e., methylammonium lead iodide (MAPI) and the triple cation MAFACsPbBrI in PSCs and P1 and Y123 dyes in DSCs, given that the band alignment and the energy offset are crucial for the charge transport at the interfaces and have direct implications on the final efficiency. We dissect the effect a copper vacancy (i.e., intrinsic p-type doping) on the alignment pattern and rationalize it from both a structural and an electronic perspective. Our data show how defects can represent a crucial degree of freedom to control the driving force for hole injection in these devices.
Collapse
Affiliation(s)
- Adriana Pecoraro
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Napoli, Italy
| | - Pasqualino Maddalena
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Napoli, Italy
| | - Michele Pavone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy
| | - Ana B. Muñoz García
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Napoli, Italy
| |
Collapse
|
4
|
Das T, Di Liberto G, Pacchioni G. Quantum confinement in chalcogenides 2D nanostructures from first principles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:405301. [PMID: 35868296 DOI: 10.1088/1361-648x/ac838b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
We investigated the impact of quantum confinement on the band gap of chalcogenides 2D nanostructures by means of density functional theory. We studied six different systems: MoS2, WS2, SnS2, GaS, InSe, and HfS2and we simulated nanosheets of increasing thickness, ranging from ultrathin films to ∼10-13 nm thick slabs, a size where the properties converge to the bulk. In some cases, the convergence of the band gap with slab thickness is rather slow, and sizeable deviations from the bulk value are still present with few nm-thick sheets. The results of the simulations were compared with the available experimental data, finding a quantitative agreement. The impact of quantum confinement can be rationalized in terms of effective masses of electrons and holes and system's size. These results show the possibility of reliably describing quantum confinement effects on systems for which experimental data are not available.
Collapse
Affiliation(s)
- Tilak Das
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, Milano, 20125, Italy
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, Milano, 20125, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, Milano, 20125, Italy
| |
Collapse
|
5
|
Coppola C, Pecoraro A, Munoz-Garcia AB, Infantino R, Dessì A, Reginato G, Basosi R, Sinicropi A, Pavone M. Electronic structure and interfacial features of triphenylamine- and phenothiazine-based hole transport materials for methylammonium lead iodide perovskite solar cells. Phys Chem Chem Phys 2022; 24:14993-15002. [DOI: 10.1039/d2cp01270g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, great research efforts have been devoted to perovskite solar cells (PSCs) leading to sunlight-to-power conversion efficiencies above 25%. However, several barriers still hinder the full deployment of these devices....
Collapse
|
6
|
Di Liberto G, Cipriano LA, Tosoni S, Pacchioni G. Rational Design of Semiconductor Heterojunctions for Photocatalysis. Chemistry 2021; 27:13306-13317. [PMID: 34264526 PMCID: PMC8518984 DOI: 10.1002/chem.202101764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/06/2022]
Abstract
Electronic structure calculations provide a useful complement to experimental characterization tools in the atomic-scale design of semiconductor heterojunctions for photocatalysis. The band alignment of the heterojunction is of fundamental importance to achieve an efficient charge carrier separation, so as to reduce electron/hole recombination and improve photoactivity. The accurate prediction of the offsets of valence and conduction bands in the constituent units is thus of key importance but poses several methodological and practical problems. In this Minireview we address some of these problems by considering selected examples of binary and ternary semiconductor heterojunctions and how these are determined at the level of density functional theory (DFT). The atomically precise description of the interface, the consequent charge polarization, the role of quantum confinement, the possibility to use facet engineering to determine a specific band alignment, are among the effects discussed, with particular attention to pros and cons of each one of these aspects. This analysis shows the increasingly important role of accurate electronic structure calculations to drive the design and the preparation of new interfaces with desired properties.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei MaterialiUniversità di Milano – BicoccaVia R. Cozzi 5520125MilanoItaly
| | - Luis A. Cipriano
- Dipartimento di Scienza dei MaterialiUniversità di Milano – BicoccaVia R. Cozzi 5520125MilanoItaly
| | - Sergio Tosoni
- Dipartimento di Scienza dei MaterialiUniversità di Milano – BicoccaVia R. Cozzi 5520125MilanoItaly
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei MaterialiUniversità di Milano – BicoccaVia R. Cozzi 5520125MilanoItaly
| |
Collapse
|
7
|
Di Liberto G, Pacchioni G. Band offset in semiconductor heterojunctions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:415002. [PMID: 34284370 DOI: 10.1088/1361-648x/ac1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Semiconductor heterojunctions are widely applied in solid-state device applications, including semiconductor lasers, solar cells, and transistors. In photocatalysis they are of interest due to their capability to hinder charge carriers' recombination. A key role in the performance of heterojunctions is that of the alignment of the band edges of the two units composing the junction. In this work, we compare the performances of three widely applied approaches for the simulation of semiconductors heterostructures, based on density functional theory calculations with hybrid functionals. We benchmark the band offsets of ten semiconductors heterostructures for which experimental values are available: AlP/GaP, AlP/Si, AlAs/GaAs, AlAs/Ge, GaAs/Ge, GaP/Si, ZnSe/Ge, ZnSe/AlAs, ZnSe/GaAs, and TiO2/SrTiO3. The methods considered are (i) the alternating slabs junction (ASJ), (ii) the surface terminated junction (STJ), and (iii) the independent units (IU) approach. Moreover, two different ways to determine a common reference have been considered, (i) the plane averaged electrostatic potential, and (ii) the energy of the core levels. Advantages, drawbacks and overall performances of each method are discussed. The results suggest that the accuracy in the estimation of the band offsets is ∼0.2 eV when the ASJ method is applied. The STJ approach provides a similar accuracy, while the neglection of any interface effect, as in the IU method, provides only a qualitative estimate of the band offset and can result in significant deviations from the experiment.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
8
|
Rybicka-Jasińska K, Derr JB, Vullev VI. What defines biomimetic and bioinspired science and engineering? PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Biomimicry, biomimesis and bioinspiration define distinctly different approaches for deepening the understanding of how living systems work and employing this knowledge to meet pressing demands in engineering. Biomimicry involves shear imitation of biological structures that most often do not reproduce the functionality that they have while in the living organisms. Biomimesis aims at reproduction of biological structure-function relationships and advances our knowledge of how different components of complex living systems work. Bioinspiration employs this knowledge in abiotic manners that are optimal for targeted applications. This article introduces and reviews these concepts in a global historic perspective. Representative examples from charge-transfer science and solar-energy engineering illustrate the evolution from biomimetic to bioinspired approaches and show their importance. Bioinspired molecular electrets, aiming at exploration of dipole effects on charge transfer, demonstrate the pintail impacts of biological inspiration that reach beyond its high utilitarian values. The abiotic character of bioinspiration opens doors for the emergence of unprecedented properties and phenomena, beyond what nature can offer.
Collapse
Affiliation(s)
| | - James B. Derr
- Department of Biochemistry , University of California , Riverside , CA , 92521 , USA
| | - Valentine I. Vullev
- Department of Biochemistry , University of California , Riverside , CA , 92521 , USA
- Department of Bioengineering , University of California , Riverside , CA , 92521 , USA
- Department of Chemistry , University of California , Riverside , CA , 92521 , USA
- Materials Science and Engineering Program , University of California , Riverside , CA , 92521 , USA
| |
Collapse
|