1
|
Varghese J, Mohammadi R, Pochylski M, Babacic V, Gapinski J, Vogel N, Butt HJ, Fytas G, Graczykowski B. Size-dependent nanoscale soldering of polystyrene colloidal crystals by supercritical fluids. J Colloid Interface Sci 2023; 633:314-322. [PMID: 36459936 DOI: 10.1016/j.jcis.2022.11.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Polymer particles self-assembled into colloidal crystals have exciting applications in photonics, phononics, templates for nanolithography, and coatings. Cold soldering utilizing polymer plasticization by supercritical fluids enables a novel, low-cost, low-effort, chemical-free means for uniform mechanical strengthening of fragile polymer colloidal crystals at moderate temperatures. Here, we aim to elucidate the role of particle size and gas-specific response for the most efficient soldering, exploring the full potential of this method. EXPERIMENTS We investigate the elastic properties of polystyrene colloidal crystals made of nanoparticles with different diameters (143 to 830 nm) upon treatment with supercritical Ar and He at room temperature. By employing Brillouin light scattering, we quantify the effect of nanoparticle size on the strengthening of interparticle contacts, evaluating the permanent change in the effective elastic modulus upon cold soldering. FINDINGS The relative change in the effective elastic modulus reveals nonmonotonic dependence on the particle size with the most efficient soldering for mid-sized nanoparticles (about 610 nm diameter). We attribute this behavior to the crucial role of intrinsic fabrication impurities, which reduces the nanoparticles' free surface exposed to plasticization by supercritical fluids. Supercritical Ar, a good solvent for polystyrene, enabled effective soldering of nanoparticles, whereas high-pressure He treatment is entirely reversible.
Collapse
Affiliation(s)
- Jeena Varghese
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - Reza Mohammadi
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstrasse 4, Erlangen D-91058, Germany
| | - Mikolaj Pochylski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - Visnja Babacic
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - Jacek Gapinski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstrasse 4, Erlangen D-91058, Germany
| | - Hans-Juergen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Cang Y, Sainidou R, Rembert P, Magnabosco G, Still T, Vogel N, Graczykowski B, Fytas G. Origin of the Acoustic Bandgaps in Hypersonic Colloidal Phononics: The Role of the Elastic Impedance. J Phys Chem B 2022; 126:6575-6584. [PMID: 35997523 PMCID: PMC9442645 DOI: 10.1021/acs.jpcb.2c03923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/11/2022] [Indexed: 11/30/2022]
Abstract
How phonons propagate in nanostructures determines the flow of elastic and thermal energy in dielectric materials. However, a reliable theoretical prediction of the phonon dispersion relation requires experimental verification both near to and far from the Brillouin zone of the nanostructure. We report on the experimental hypersonic phonon dispersion of hard (SiO2) and soft (polymer) fcc colloidal crystals infiltrated in liquid polydimethylsiloxane with different elastic impedance contrast using Brillouin light spectroscopy. We discuss the distinct differences with first-principles full elastodynamic calculations involving a multiple-scattering theory. Interparticle contacts strongly impact the long-wavelength speed of sound and the nature of the particle vibration resonance-induced hybridization hypersonic bandgap. The absence of the order-induced Bragg bandgap in SiO2 and its presence in soft opals cannot be fully accounted for by the theory, limiting its predictive power. Bridging the elasticity of the two colloidal crystals with suitable SiO2 core-shell (polymer) particles reveals an unprecedented crossover behavior in the dispersion relation. In view of many conversational parameters, the control tuning of phonon propagation in soft matter-based hypersonic phononics remains challenging.
Collapse
Affiliation(s)
- Yu Cang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- School
of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu
Road 100, Shanghai 200092, China
| | - Rebecca Sainidou
- Laboratoire
Ondes et Milieux Complexes UMR CNRS 6294, UNIHAVRE, Normandie University, 75 rue Bellot, F-76600 Le Havre, France
| | - Pascal Rembert
- Laboratoire
Ondes et Milieux Complexes UMR CNRS 6294, UNIHAVRE, Normandie University, 75 rue Bellot, F-76600 Le Havre, France
| | - Giulia Magnabosco
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Tim Still
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Bartlomiej Graczykowski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61-614, Poland
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Electronic Structure and Laser, FO.R.T.H, N. Plastira 100, /0013, Heraklion 71110, Greece
| |
Collapse
|
3
|
Gogoi H, Banerjee S, Datta A. Photoluminescent silica nanostructures and nanohybrids. Chemphyschem 2022; 23:e202200280. [PMID: 35686692 DOI: 10.1002/cphc.202200280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Indexed: 11/06/2022]
Abstract
The complicated photophysics of wide variety of defects existing in silica (SiO2) layer of nanometer thickness determines wide spread photoluminescence bands of Si/SiO2 based system as well as SiO2 nanoparticles (NPs) for their applications in photovoltaic and optoelectronic devices. This review attempts to summarize different photophysical processes in pure SiO2 NPs. Moreover, these NPs also act as scaffolds for various guest molecules to perform their specific functions. Guest fluorophore molecules when trapped inside pores of SiO2 NPs exhibit a different photodynamics than free state, which opens up several important applications of hybrid SiO2 NPs in artificial photosynthesis, sensing, biology and optical fiber.
Collapse
Affiliation(s)
- Hemen Gogoi
- Indian Institute of Technology Bombay, Chemistry, Department of Chemistry, IIT Bombay, Powai, 400076, Mumbai, INDIA
| | - Subhasree Banerjee
- Panchmura Mahavidyalaya, Chemistry, Department of Chemistry Panchmura Mahavidyalaya Bankura, West Bengal 722156, Ind, 722156, Bankura, INDIA
| | - Anindya Datta
- Indian Institute of Technology Bombay, Department of Chemistry, Powai, 400076, Mumbai, INDIA
| |
Collapse
|
4
|
Wang J, Kang E, Sultan U, Merle B, Inayat A, Graczykowski B, Fytas G, Vogel N. Influence of Surfactant-Mediated Interparticle Contacts on the Mechanical Stability of Supraparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:23445-23456. [PMID: 34737841 PMCID: PMC8558861 DOI: 10.1021/acs.jpcc.1c06839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Indexed: 05/14/2023]
Abstract
Colloidal supraparticles are micron-scale spherical assemblies of uniform primary particles, which exhibit emergent properties of a colloidal crystal, yet exist as a dispersible powder. A prerequisite to utilize these emergent functionalities is that the supraparticles maintain their mechanical integrity upon the mechanical impacts that are likely to occur during processing. Understanding how the internal structure relates to the resultant mechanical properties of a supraparticle is therefore of general interest. Here, we take the example of supraparticles templated from water/fluorinated oil emulsions in droplet-based microfluidics and explore the effect of surfactants on their mechanical properties. Stable emulsions can be generated by nonionic block copolymers consisting of a hydrophilic and fluorophilic block and anionic fluorosurfactants widely available under the brand name Krytox. The supraparticles formed in the presence of both types of surfactants appear structurally similar, but differ greatly in their mechanical properties. While the nonionic surfactant induces superior mechanical stability and ductile fracture behavior, the anionic Krytox surfactant leads to weak supraparticles with brittle fracture. We complement this macroscopic picture with Brillouin light spectroscopy that is very sensitive to the interparticle contacts for subnanometer-thick adsorbed layers atop of the nanoparticle. While the anionic Krytox does not significantly affect the interparticle bonds, the amphiphilic nonionic surfactant drastically strengthens these bonds to the point that individual particle vibrations are not resolved in the experimental spectrum. Our results demonstrate that seemingly subtle changes in the physicochemical properties of supraparticles can drastically impact the resultant mechanical properties.
Collapse
Affiliation(s)
- Junwei Wang
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Eunsoo Kang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Umair Sultan
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials
Science and Engineering I and Interdisciplinary Center for Nanostructured
Films (IZNF), Friedrich-Alexander University
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexandra Inayat
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Bartlomiej Graczykowski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61-614, Poland
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- E-mail:
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- E-mail:
| |
Collapse
|
5
|
Noual A, Kang E, Maji T, Gkikas M, Djafari-Rouhani B, Fytas G. Optomechanic Coupling in Ag Polymer Nanocomposite Films. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:14854-14864. [PMID: 34295447 PMCID: PMC8287562 DOI: 10.1021/acs.jpcc.1c04549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Indexed: 05/08/2023]
Abstract
Particle vibrational spectroscopy has emerged as a new tool for the measurement of elasticity, glass transition, and interactions at a nanoscale. For colloid-based materials, however, the weakly localized particle resonances in a fluid or solid medium renders their detection difficult. The strong amplification of the inelastic light scattering near surface plasmon resonance of metallic nanoparticles (NPs) allowed not only the detection of single NP eigenvibrations but also the interparticle interaction effects on the acoustic vibrations of NPs mediated by strong optomechanical coupling. The "rattling" and quadrupolar modes of Ag/polymer and polymer-grafted Ag NPs with different diameters in their assemblies are probed by Brillouin light spectroscopy (BLS). We present thorough theoretical 3D calculations for anisotropic Ag elasticity to quantify the frequency and intensity of the "rattling" mode and hence its BLS activity for different interparticle separations and matrix rigidity. Theoretically, a liquidlike environment, e.g., poly(isobutylene) (PIB) does not support rattling vibration of Ag dimers but unexpectedly hardening of the extremely confined graft melt renders both activation of the former and a frequency blue shift of the fundamental quadrupolar mode in the grafted nanoparticle Ag@PIB film.
Collapse
Affiliation(s)
- Adnane Noual
- Faculté
Pluridisciplinaire Nador, LPMR, Université
Mohammed Premier, Oujda BP 717-60 000, Morocco
| | - Eunsoo Kang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Tanmoy Maji
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Manos Gkikas
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Bahram Djafari-Rouhani
- Institut
d’Électronique, de Microélectronique et de Nanotechnologie
(IEMN), UMR-CNRS 8520, Department of Physics, University of Lille, Villeneuve d’Ascq 59655, France
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|