1
|
Fleck M, Darouich S, Pleiss J, Hansen N, Spera MBM. Physics-Informed Multifidelity Gaussian Process: Modeling the Effect of Water and Temperature on the Viscosity of a Deep Eutectic Solvent. J Chem Inf Model 2025; 65:3999-4009. [PMID: 40237407 DOI: 10.1021/acs.jcim.5c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Knowledge of shear viscosity as function of temperature and composition of an aqueous deep eutectic solvent mixture is essential for process design but can be highly challenging and costly to measure. The present work proposes to combine a small set of experimentally determined viscosities with a small set of simulated values within a linear multifidelity approach to predict the dependency of shear viscosity on temperature and composition. This method provides a simple approach that requires a physics-based transformation of viscosity data prior to training, without the need for additional data such as densities. This allows reduction in cost with experiments and reduces the number of experiments and simulations required to characterize a specific system. The data-driven component of the model does not concern the viscosity itself but rather the excess free energy term within the framework of a mixture viscosity model according to Eyring's absolute rate theory. Moreover, we illustrate the application of kernel-based machine learning approaches to daily research questions where data availability is limited compared to the data set size typically required for neural networks.
Collapse
Affiliation(s)
- Maximilian Fleck
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Samir Darouich
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Marcelle B M Spera
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Gao Y, Wu J, Feng Y, Han J, Fang H. Effects of Hydrogen Bond Networks on Viscosity in Aqueous Solutions. J Phys Chem B 2024; 128:8984-8996. [PMID: 39236306 DOI: 10.1021/acs.jpcb.4c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
In aqueous solutions, the impact of ions on hydrogen bond networks plays a crucial role in transport properties. We used molecular dynamics simulations to explain how ions affect viscosity through structural changes. We developed a quantitative model to describe the effect of ions on viscosity. The model comprises two parts: the addition of ions alters hydrogen bond networks, and changes in hydrogen bond networks exponentially lead to changes in viscosity. The influence of ions on hydrogen bond networks involves the following mechanisms: first, ions can disrupt the tetrahedral structures within the first solvation shell into three-coordinated structures through substitution; second, structural changes within the first shells affect the global hydrogen bond network through electrostatic forces and the hindrance of ionic volumes. By analyzing the mechanisms of how hydrogen bond networks determine viscosity through the decomposition of viscosity, we found that the proportion of potential viscosity in aqueous solutions primarily increases due to the enhancement of non-hydrogen bonding interactions, and the proportion of hydrogen bonding viscosity decreases accordingly. Our results demonstrate that hydrogen bond networks are crucial for describing the changes in transport phenomena affected by external factors.
Collapse
Affiliation(s)
- Yitian Gao
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
- China Renewable Energy Engineering Institute, Beijing 100120, China
| | - Jian Wu
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yixuan Feng
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Jiale Han
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Hongwei Fang
- State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Gao N, Yang Y, Wang Z, Guo X, Jiang S, Li J, Hu Y, Liu Z, Xu C. Viscosity of Ionic Liquids: Theories and Models. Chem Rev 2024; 124:27-123. [PMID: 38156796 DOI: 10.1021/acs.chemrev.3c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Ionic liquids (ILs) offer a wide range of promising applications due to their unique and designable properties compared to conventional solvents. Further development and application of ILs require correlating/predicting their pressure-viscosity-temperature behavior. In this review, we firstly introduce methods for calculation of thermodynamic inputs of viscosity models. Next, we introduce theories, theoretical and semi-empirical models coupling various theories with EoSs or activity coefficient models, and empirical and phenomenological models for viscosity of pure ILs and IL-related mixtures. Our modelling description is followed immediately by model application and performance. Then, we propose simple predictive equations for viscosity of IL-related mixtures and systematically compare performances of the above-mentioned theories and models. In concluding remarks, we recommend robust predictive models for viscosity at atmospheric pressure as well as proper and consistent theories and models for P-η-T behavior. The work that still remains to be done to obtain the desired theories and models for viscosity of ILs and IL-related mixtures is also presented. The present review is structured from pure ILs to IL-related mixtures and aims to summarize and quantitatively discuss the recent advances in theoretical and empirical modelling of viscosity of ILs and IL-related mixtures.
Collapse
Affiliation(s)
- Na Gao
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Ye Yang
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Zhiyuan Wang
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Xin Guo
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Siqi Jiang
- Sinopec Engineering Incorporation, Beijing 100195, P. R. China
| | - Jisheng Li
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Yufeng Hu
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing at Karamay, Karamay 834000, China
| | - Zhichang Liu
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| |
Collapse
|
4
|
Urzúa JI, Valenzuela ML, Cavieres J, Inestrosa-Izurieta MJ. Ionic liquid mixtures as energy storage materials: a preliminary and comparative study based on thermal storage density. RSC Adv 2023; 13:19412-19419. [PMID: 37383686 PMCID: PMC10293934 DOI: 10.1039/d3ra02901h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Fifteen equimolar binary mixtures are synthesized and thermophysically evaluated in this study. These mixtures are derived from six ionic liquids (ILs) based on methylimidazolium and 2,3-dimethylimidazolium cations with butyl chains. The objective is to compare and elucidate the impact of small structural changes on the thermal properties. The preliminary results are compared to previously obtained results with mixtures containing longer eight-carbon chains. The study demonstrates that certain mixtures exhibit an increase in their heat capacity. Additionally, due to their higher densities, these mixtures achieve a thermal storage density equivalent to that of mixtures with longer chains. Moreover, their thermal storage density surpasses that of some conventional materials commonly used for energy storage.
Collapse
Affiliation(s)
- Julio I Urzúa
- Centro de Materiales para la Transición y Sostenibilidad Energética, Comisión Chilena de Energía Nuclear Ruta 68, km 20, Pudahuel Santiago Chile
| | - María Luisa Valenzuela
- Universidad Autónoma de Chile, Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Grupo de Investigación en Energía y Procesos Sustentables Av. El Llano Subercaseaux 2801 Santiago Chile
| | - Jenifer Cavieres
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María Av. Vicuña Mackenna 3939, San Joaquín Santiago Chile
| | - María José Inestrosa-Izurieta
- Centro de Materiales para la Transición y Sostenibilidad Energética, Comisión Chilena de Energía Nuclear Ruta 68, km 20, Pudahuel Santiago Chile
| |
Collapse
|
5
|
Kumar Bambam A, Dhanola A, Kumar Gajrani K. A critical review on halogen-free ionic liquids as potential metalworking fluid additives. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Modeling the viscosity of binary eutectic systems at different compositions and temperatures. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Viscosity prediction of ionic liquids using NLR and SVM approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Efficient SO2 removal using aqueous ionic liquid at low partial pressure. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Krasovskii VG, Kapustin GI, Glukhov LM, Chernikova EA, Kustov LM. Dicationic Ionic Liquids As Heat Transfer Fluids in Vacuum. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422070172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
A REVIEW OF GROUP CONTRIBUTION MODELS TO CALCULATE THERMODYNAMIC PROPERTIES OF IONIC LIQUIDS FOR PROCESS SYSTEMS ENGINEERING. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Szabadi A, Honegger P, Schöfbeck F, Sappl M, Heid E, Steinhauser O, Schröder C. Collectivity in ionic liquids: a temperature dependent, polarizable molecular dynamics study. Phys Chem Chem Phys 2022; 24:15776-15790. [PMID: 35758401 DOI: 10.1039/d2cp00898j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use polarizable molecular dynamics simulations to study the thermal dependence of both structural and dynamic properties of two ionic liquids sharing the same cation (1-ethyl-3-methylimidazolium). The linear temperature trend in the structure is accompanied by an exponential Arrhenius-like behavior of the dynamics. Our parameter-free Voronoi tessellation analysis directly casts doubt on common concepts such as the alternating shells of cations and anions and the ionicity. The latter tries to explain the physico-chemical properties of the ionic liquids based on the association and dissociation of an ion pair. However, cations are in the majority of both ion cages, around cations and around anions. There is no preference of a cation for a single anion. Collectivity is a key factor in the dynamic properties of ionic liquids. Consequently, collective rotation relaxes faster than single-particle rotations, and the activation energies for collective translation and rotation are lower than those of the single molecules.
Collapse
Affiliation(s)
- András Szabadi
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria.
| | - Philipp Honegger
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria.
| | - Flora Schöfbeck
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria.
| | - Marion Sappl
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria.
| | - Esther Heid
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria. .,Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
| | - Othmar Steinhauser
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria.
| | - Christian Schröder
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria.
| |
Collapse
|
12
|
Cavieres J, José Inestrosa-Izurieta M, Vasco DA, Urzúa JI. Ionanofluids based on ionic liquid mixtures, a new approach as an alternative material for solar energy storage. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Philippi F, Rauber D, Eliasen KL, Bouscharain N, Niss K, Kay CWM, Welton T. Pressing matter: why are ionic liquids so viscous? Chem Sci 2022; 13:2735-2743. [PMID: 35340854 PMCID: PMC8890108 DOI: 10.1039/d1sc06857a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/06/2022] [Indexed: 01/09/2023] Open
Abstract
Room temperature ionic liquids are considered to have huge potential for practical applications such as batteries. However, their high viscosity presents a significant challenge to their use changing from niche to ubiquitous. The modelling and prediction of viscosity in ionic liquids is the subject of an ongoing debate involving two competing hypotheses: molecular and local mechanisms versus collective and long-range mechanisms. To distinguish between these two theories, we compared an ionic liquid with its uncharged, isoelectronic, isostructural molecular mimic. We measured the viscosity of the molecular mimic at high pressure to emulate the high densities in ionic liquids, which result from the Coulomb interactions in the latter. We were thus able to reveal that the relative contributions of coulombic compaction and the charge network interactions are of similar magnitude. We therefore suggest that the optimisation of the viscosity in room temperature ionic liquids must follow a dual approach.
Collapse
Affiliation(s)
- Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| | - Daniel Rauber
- Department of Chemistry, Saarland University Campus B2.2 Saarbrücken Germany
| | - Kira Lieberkind Eliasen
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University P.O. Box 260 DK-4000 Roskilde Denmark
| | | | - Kristine Niss
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University P.O. Box 260 DK-4000 Roskilde Denmark
| | - Christopher W M Kay
- Department of Chemistry, Saarland University Campus B2.2 Saarbrücken Germany.,London Centre for Nanotechnology, University College London 17-19 Gordon Street London WC1H 0AH UK
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
14
|
Bodo E. Perspectives in the Computational Modeling of New Generation, Biocompatible Ionic Liquids. J Phys Chem B 2022; 126:3-13. [PMID: 34978449 PMCID: PMC8762658 DOI: 10.1021/acs.jpcb.1c09476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Indexed: 12/11/2022]
Abstract
In this Perspective, I review the current state of computational simulations on ionic liquids with an emphasis on the recent biocompatible variants. These materials are used here as an example of relatively complex systems that highlights the limits of some of the approaches commonly used to study their structure and dynamics. The source of these limits consists of the coexistence of nontrivial electrostatic, many-body quantum effects, strong hydrogen bonds, and chemical processes affecting the mutual protonation state of the constituent molecular ions. I also provide examples on how it is possible to overcome these problems using suitable simulation paradigms and recently improved techniques that, I expect, will be gradually introduced in the state-of-the-art of computational simulations of ionic liquids.
Collapse
Affiliation(s)
- Enrico Bodo
- Chemistry Department, University of Rome “La Sapienza”, P. A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
New mathematical modeling of temperature-based properties of ionic liquids mixture: Comparison between semi-empirical equation and equation of state. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Abdou N, Dieudonné-George P, Brun N, Mehdi A, Hesemann P. Textural control of ionosilicas by Ionic Liquid templating. Phys Chem Chem Phys 2022; 24:21853-21862. [DOI: 10.1039/d2cp02524h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to their unique self-assembly properties, ionic liquids (ILs) are versatile soft templates for the formation of mesoporous materials. Here, we report the use of ionic liquids as soft templates...
Collapse
|
17
|
Hekayati J, Raeissi S. A global transform for the general formulation of liquid viscosities with significant linearizing benefits: a case study on ionic liquid mixtures. Phys Chem Chem Phys 2021; 23:22551-22566. [PMID: 34590662 DOI: 10.1039/d1cp02033a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the different thermophysical properties of significant importance in the study of transport phenomena, viscosity has long defied attempts at presenting a unified model applicable to both pure compounds and binary mixtures within extended temperature and composition ranges. Similar to the role that ln(Psat.)-T-1 profiles play in linearizing vapor pressure data, here it is contended for the first time that it is highly beneficial to study viscosity in the space, as opposed to the commonly used logarithmic space. Within this framework, the groundbreaking Lewis-Squires model is modified and extended to mixtures by studying 184 binary systems with 89 distinct ILs and 17 polar and nonpolar solutes. The dataset covers a total of 1104 isotherms with 10 909 data points, having quite an extensive range of viscosities, from 0.447 to 113 733 (mPa s). Breaking a highly regarded convention upheld for decades, the proposed model does not stipulate the availability of pure state viscosity and/or volumetric data over the whole temperature range, which acts as a bottleneck for the current literature models that have all been cast in the same mold inspired by thermodynamic mixing rules. In practice, without utilizing any volumetric properties, a single pure solvent viscosity datum at any reference temperature is the only requirement in the interpolative mode, which is complemented by the binary viscosity data at the reference isotherm of choice in the extrapolative mode of the proposed model that is concurrently applicable to both pure components and binary mixtures. An AARD of 2.82% was obtained in estimating the binary viscosity data using the new algorithm, while deviations of 13.58%, 6.79%, 6.17%, and 3.41% were obtained for the Grunberg and Nissan, Fang and He, Jouyban-Acree, and Eyring-MTSM models, respectively. Moreover, for extrapolation of the binary data measured at room temperature, a capability exclusive to the proposed model, an overall AARD of 5.66% was obtained for the mixtures of interest. With significant inherent flexibility, the new methodology could also be employed to represent the uncommon composition dependence of certain IL systems exhibiting multiple local extrema, with AARDs close to half of those of the current models.
Collapse
Affiliation(s)
- Javad Hekayati
- School of Chemical and Petroleum Engineering, Shiraz University, 71348-51154, Mollasadra Ave., Shiraz, Iran.
| | - Sona Raeissi
- School of Chemical and Petroleum Engineering, Shiraz University, 71348-51154, Mollasadra Ave., Shiraz, Iran.
| |
Collapse
|
18
|
S Salehi H, Celebi AT, Vlugt TJH, Moultos OA. Thermodynamic, transport, and structural properties of hydrophobic deep eutectic solvents composed of tetraalkylammonium chloride and decanoic acid. J Chem Phys 2021; 154:144502. [PMID: 33858163 DOI: 10.1063/5.0047369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With the emergence of hydrophobic deep eutectic solvents (DESs), the scope of applications of DESs has been expanded to include situations in which miscibility with water is undesirable. Whereas most studies have focused on the applications of hydrophobic DESs from a practical standpoint, few theoretical works exist that investigate the structural and thermodynamic properties at the nanoscale. In this study, Molecular Dynamics (MD) simulations have been performed to model DESs composed of tetraalkylammonium chloride hydrogen bond acceptor and decanoic acid hydrogen bond donor (HBD) at a molar ratio of 1:2, with three different cation chain lengths (4, 7, and 8). After fine-tuning force field parameters, densities, viscosities, self-diffusivities, and ionic conductivities of the DESs were computed over a wide temperature range. The liquid structure was examined using radial distribution functions (RDFs) and hydrogen bond analysis. The MD simulations reproduced the experimental density and viscosity data from the literature reasonably well and were used to predict diffusivities and ionic conductivities, for which experimental data are scarce or unavailable. It was found that although an increase in the cation chain length considerably affected the density and transport properties of the DESs (i.e., yielding smaller densities and slower dynamics), no significant influence was observed on the RDFs and the hydrogen bonds. The self-diffusivities showed the following order for the mobility of the various components: HBD > anion > cation. Strong hydrogen bonds between the hydroxyl and carbonyl groups of decanoic acid and between the hydroxyl group of decanoic acid and chloride were observed to dominate the intermolecular interactions.
Collapse
Affiliation(s)
- Hirad S Salehi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Alper T Celebi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|