1
|
Vink M, van Geenen FA, Berden G, O’Riordan TJC, Howe PW, Oomens J, Perry SJ, Martens J. Structural Elucidation of Agrochemicals and Related Derivatives Using Infrared Ion Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15563-15572. [PMID: 36214158 PMCID: PMC9671053 DOI: 10.1021/acs.est.2c03210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/03/2023]
Abstract
Agrochemicals frequently undergo various chemical and metabolic transformation reactions in the environment that often result in a wide range of derivates that must be comprehensively characterized to understand their toxicity profiles and their persistence and outcome in the environment. In the development phase, this typically involves a major effort in qualitatively identifying the correct chemical isomer(s) of these derivatives from the many isomers that could potentially be formed. Liquid chromatography-mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy are often used in attempts to characterize such environment transformation products. However, challenges in confidently correlating chemical structures to detected compounds in mass spectrometry data and sensitivity/selectivity limitations of NMR frequently lead to bottlenecks in identification. In this study, we use an alternative approach, infrared ion spectroscopy, to demonstrate the identification of hydroxylated derivatives of two plant protection compounds (azoxystrobin and benzovindiflupyr) contained at low levels in tomato and spinach matrices. Infrared ion spectroscopy is an orthogonal tandem mass spectrometry technique that combines the sensitivity and selectivity of mass spectrometry with structural information obtained by infrared spectroscopy. Furthermore, IR spectra can be computationally predicted for candidate molecular structures, enabling the tentative identification of agrochemical derivatives and other unknowns in the environment without using physical reference standards.
Collapse
Affiliation(s)
- Matthias
J.A. Vink
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, the Netherlands
| | - Fred A.M.G. van Geenen
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, the Netherlands
| | - Giel Berden
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, the Netherlands
| | - Timothy J. C. O’Riordan
- Syngenta,
Jealott’s Hill International Research Centre, RG42 6EY, Bracknell, Berkshire, United Kingdom
| | - Peter W.A. Howe
- Syngenta,
Jealott’s Hill International Research Centre, RG42 6EY, Bracknell, Berkshire, United Kingdom
| | - Jos Oomens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, the Netherlands
| | - Simon J. Perry
- Syngenta,
Jealott’s Hill International Research Centre, RG42 6EY, Bracknell, Berkshire, United Kingdom
| | - Jonathan Martens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525ED Nijmegen, the Netherlands
| |
Collapse
|
2
|
Hirata K, Haddad F, Dopfer O, Ishiuchi SI, Fujii M. Collision-assisted stripping for determination of microsolvation-dependent protonation sites in hydrated clusters by cryogenic ion trap infrared spectroscopy: the case of benzocaineH +(H 2O) n. Phys Chem Chem Phys 2022; 24:5774-5779. [PMID: 35199812 DOI: 10.1039/d1cp05762f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The protonation site of molecules can be varied by their surrounding environment. Gas-phase studies, including the popular techniques of infrared spectroscopy and ion mobility spectrometry, are a powerful tool for the determination of protonation sites in solvated clusters but often suffer from inherent limits for larger hydrated clusters. Here, we present collision-assisted stripping infrared (CAS-IR) spectroscopy as a new technique to overcome these problems and apply it in a proof-of-principle experiment to hydrated clusters of protonated benzocaine (H+BC), which shows protonation-site switching depending on the degree of hydration. The most stable protomer of H+BC in the gas phase (O-protonated) is interconverted into its most stable protomer in aqueous solution (N-protonated) upon hydration with three water molecules. CAS-IR spectroscopy enables us to unambiguously assign protonation sites and quantitatively determine the relative abundance of various protomers.
Collapse
Affiliation(s)
- Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, 4259, Yokohama, 226-8503, Japan.
| | - Fuad Haddad
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, Berlin 10623, Germany
| | - Otto Dopfer
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, 4259, Yokohama, 226-8503, Japan. .,Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, Berlin 10623, Germany
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, 4259, Yokohama, 226-8503, Japan.
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, 4259, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| |
Collapse
|