1
|
Vardin AP, Aksoy F, Yesiloz G. A Novel Acoustic Modulation of Oscillating Thin Elastic Membrane for Enhanced Streaming in Microfluidics and Nanoscale Liposome Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403463. [PMID: 39324290 PMCID: PMC11600698 DOI: 10.1002/smll.202403463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Liposomes are widely utilized in therapeutic nanosystems as promising drug carriers for cancer treatment, which requires a meticulous synthesis approach to control the nanoprecipitation process. Acoustofluidic platforms offer a favorable synthesis environment by providing robust agitation and rapid mixing. Here, a novel high-throughput acoustofluidic micromixer is presented for a solvent and solvent-free synthesis of ultra-small and size-tunable liposomes. The size-tunability is achieved by incorporating glycerol as a new technique into the synthesis reagents, serving as a size regulator. The proposed device utilizes the synergistic effects of vibrating trapped microbubbles and an oscillating thin elastic membrane to generate vigorous acoustic microstreaming. The working principle and mixing mechanism of the device are explored numerically and experimentally. The platform exhibits remarkable mixing efficacy for aqueous and viscous solutions at flow rates up to 8000 µL/h, which makes it unique for high-throughput liposome formation and preventing aggregation. As a proof of concept, this study investigates the impact of phospholipid type and concentration, flow rate, and glycerol on the size and size distribution of liposomes. The results reveal a significant size reduction, from ≈900 nm to 40 nm, achieved by merely introducing 75% glycerol into the synthesis reagents, highlighting an innovative approach toward size-tunable liposomes.
Collapse
Affiliation(s)
- Ali Pourabdollah Vardin
- National Nanotechnology Research Center (UNAM)‐ Bilkent UniversityCankaya‐Ankara06800Türkiye
- Institute of Material Science and NanotechnologyBilkent UniversityCankaya‐Ankara06800Türkiye
| | - Faruk Aksoy
- National Nanotechnology Research Center (UNAM)‐ Bilkent UniversityCankaya‐Ankara06800Türkiye
- Institute of Material Science and NanotechnologyBilkent UniversityCankaya‐Ankara06800Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM)‐ Bilkent UniversityCankaya‐Ankara06800Türkiye
- Institute of Material Science and NanotechnologyBilkent UniversityCankaya‐Ankara06800Türkiye
| |
Collapse
|
2
|
Pilkington CP, Gispert I, Chui SY, Seddon JM, Elani Y. Engineering a nanoscale liposome-in-liposome for in situ biochemical synthesis and multi-stage release. Nat Chem 2024; 16:1612-1620. [PMID: 39009794 PMCID: PMC11446840 DOI: 10.1038/s41557-024-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Soft-matter nanoscale assemblies such as liposomes and lipid nanoparticles have the potential to deliver and release multiple cargos in an externally stimulated and site-specific manner. Such assemblies are currently structurally simplistic, comprising spherical capsules or lipid clusters. Given that form and function are intertwined, this lack of architectural complexity restricts the development of more sophisticated properties. To address this, we have devised an engineering strategy combining microfluidics and conjugation chemistry to synthesize nanosized liposomes with two discrete compartments, one within another, which we term concentrisomes. We can control the composition of each bilayer and tune both particle size and the dimensions between inner and outer membranes. We can specify the identity of encapsulated cargo within each compartment, and the biophysical features of inner and outer bilayers, allowing us to imbue each bilayer with different stimuli-responsive properties. We use these particles for multi-stage release of two payloads at defined time points, and as attolitre reactors for triggered in situ biochemical synthesis.
Collapse
Affiliation(s)
- Colin P Pilkington
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Suet Y Chui
- Department of Chemical Engineering, Imperial College London, London, UK
| | - John M Seddon
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
3
|
Nele V, Campani V, Alia Moosavian S, De Rosa G. Lipid nanoparticles for RNA delivery: Self-assembling vs driven-assembling strategies. Adv Drug Deliv Rev 2024; 208:115291. [PMID: 38514018 DOI: 10.1016/j.addr.2024.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Among non-viral vectors, lipid nanovectors are considered the gold standard for the delivery of RNA therapeutics. The success of lipid nanoparticles for RNA delivery, with three products approved for human use, has stimulated further investigation into RNA therapeutics for different pathologies. This requires decoding the pathological intracellular processes and tailoring the delivery system to the target tissue and cells. The complexity of the lipid nanovectors morphology originates from the assembling of the lipidic components, which can be elicited by various methods able to drive the formation of nanoparticles with the desired organization. In other cases, pre-formed nanoparticles can be mixed with RNA to induce self-assembly and structural reorganization into RNA-loaded nanoparticles. In this review, the most relevant lipid nanovectors and their potentialities for RNA delivery are described on the basis of the assembling mechanism and of the particle architecture.
Collapse
Affiliation(s)
- Valeria Nele
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Seyedeh Alia Moosavian
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49 80131 Naples, Italy.
| |
Collapse
|
4
|
Sun Q, Shi J, Sun H, Zhu Y, Du J. Membrane and Lumen-Compartmentalized Polymersomes for Biocatalysis and Cell Mimics. Biomacromolecules 2023; 24:4587-4604. [PMID: 37842883 DOI: 10.1021/acs.biomac.3c00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Compartmentalization is a crucial feature of a natural cell, manifested in cell membrane and inner lumen. Inspired by the cellular structure, multicompartment polymersomes (MCPs), including membrane-compartmentalized polymersomes and lumen-compartmentalized polymersomes (polymersomes-in-polymersomes), have aroused great expectations for biological applications such as biocatalysis and cell mimics in the past decades. Compared with traditional polymersomes, MCPs have advantages in encapsulating multiple enzymes separately for multistep enzymatic cascade reactions. In this review, first, the design principles and preparation methods of membrane-compartmentalized and lumen-compartmentalized polymersomes are summarized. Next, recent advances of MCPs as nanoreactors and cell mimics to mimic subcellular organelles or artificial cells are discussed. Finally, the future research directions of MCPs are prospected.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Junqiu Shi
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
5
|
Koroleva M. Multicompartment colloid systems with lipid and polymer membranes for biomedical applications. Phys Chem Chem Phys 2023; 25:21836-21859. [PMID: 37565484 DOI: 10.1039/d3cp01984e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Multicompartment structures have the potential for biomedical applications because they can act as multifunctional systems and provide simultaneous delivery of drugs and diagnostics agents of different types. Moreover, some of them mimic biological cells to some extent with organelles as separate sub-compartments. This article analyses multicompartment colloidal structures with smaller sub-units covered with lipid or polymer membranes that provide additional protection for the encapsulated substances. Vesosomes with small vesicles encapsulated in the inner pools of larger liposomes are the most studied systems to date. Dendrimer molecules are enclosed by a lipid bilayer shell in dendrosomes. Capsosomes, polymersomes-in-polymer capsules, and cubosomes-in-polymer capsules are composed of sub-compartments encapsulated within closed multilayer polymer membranes. Janus or Cerberus emulsions contain droplets composed of two or three phases: immiscible oils in O/W emulsions and aqueous polymer or salt solutions that are separated into two or three phases and form connected droplets in W/O emulsions. In more cases, the external surface of engulfed droplets in Janus or Cerberus emulsions is covered with a lipid or polymer monolayer. eLiposomes with emulsion droplets encapsulated into a bilayer shell have been given little attention so far, but they have very great prospects. In addition to nanoemulsion droplets, solid lipid nanoparticles, nanostructured lipid carriers and inorganic nanoparticles can be loaded into eLiposomes. Molecular engineering of the external membrane allows the creation of ligand-targeted and stimuli-responsive multifunctional systems. As a result, the efficacy of drug delivery can be significantly enhanced.
Collapse
Affiliation(s)
- Marina Koroleva
- Mendeleev University of Chemical Technology, Miusskaya sq. 9, Moscow 125047.
| |
Collapse
|
6
|
Pilkington CP, Contini C, Barritt JD, Simpson PA, Seddon JM, Elani Y. A microfluidic platform for the controlled synthesis of architecturally complex liquid crystalline nanoparticles. Sci Rep 2023; 13:12684. [PMID: 37542147 PMCID: PMC10403506 DOI: 10.1038/s41598-023-39205-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Soft-matter nanoparticles are of great interest for their applications in biotechnology, therapeutic delivery, and in vivo imaging. Underpinning this is their biocompatibility, potential for selective targeting, attractive pharmacokinetic properties, and amenability to downstream functionalisation. Morphological diversity inherent to soft-matter particles can give rise to enhanced functionality. However, this diversity remains untapped in clinical and industrial settings, and only the simplest of particle architectures [spherical lipid vesicles and lipid/polymer nanoparticles (LNPs)] have been routinely exploited. This is partially due to a lack of appropriate methods for their synthesis. To address this, we have designed a scalable microfluidic hydrodynamic focusing (MHF) technology for the controllable, rapid, and continuous production of lyotropic liquid crystalline (LLC) nanoparticles (both cubosomes and hexosomes), colloidal dispersions of higher-order lipid assemblies with intricate internal structures of 3-D and 2-D symmetry. These particles have been proposed as the next generation of soft-matter nano-carriers, with unique fusogenic and physical properties. Crucially, unlike alternative approaches, our microfluidic method gives control over LLC size, a feature we go on to exploit in a fusogenic study with model cell membranes, where a dependency of fusion on particle diameter is evident. We believe our platform has the potential to serve as a tool for future studies involving non-lamellar soft nanoparticles, and anticipate it allowing for the rapid prototyping of LLC particles of diverse functionality, paving the way toward their eventual wide uptake at an industrial level.
Collapse
Affiliation(s)
- Colin P Pilkington
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK.
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | - Claudia Contini
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Joseph D Barritt
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Paul A Simpson
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - John M Seddon
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Bekir M, Sperling M, Muñoz DV, Braksch C, Böker A, Lomadze N, Popescu MN, Santer S. Versatile Microfluidics Separation of Colloids by Combining External Flow with Light-Induced Chemical Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300358. [PMID: 36971035 DOI: 10.1002/adma.202300358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Separation of particles by size, morphology, or material identity is of paramount importance in fields such as filtration or bioanalytics. Up to now separation of particles distinguished solely by surface properties or bulk/surface morphology remains a very challenging process. Here a combination of pressure-driven microfluidic flow and local self-phoresis/osmosis are proposed via the light-induced chemical activity of a photoactive azobenzene-surfactant solution. This process induces a vertical displacement of the sedimented particles, which depends on their size and surface properties . Consequently, different colloidal components experience different regions of the ambient microfluidic shear flow. Accordingly, a simple, versatile method for the separation of such can be achieved by elution times in a sense of particle chromatography. The concepts are illustrated via experimental studies, complemented by theoretical analysis, which include the separation of bulk-porous from bulk-compact colloidal particles and the separation of particles distinguished solely by slight differences in their surface physico-chemical properties.
Collapse
Affiliation(s)
- Marek Bekir
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, 14476, Potsdam, Germany
| | - Marcel Sperling
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Daniela Vasquez Muñoz
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, 14476, Potsdam, Germany
| | - Cevin Braksch
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, 14476, Potsdam, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, 14476, Potsdam, Germany
| | - Mihail N Popescu
- Department Theory of Inhomogeneous Condensed Matter, Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Física Teórica, Department Theory of Inhomogeneous Condensed Matter, Universidad de Sevilla, 41080, Apdo. 1065, Sevilla, Spain
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, 14476, Potsdam, Germany
| |
Collapse
|
8
|
Yu H, Dyett BP, Zhai J, Strachan JB, Drummond CJ, Conn CE. Formation of particulate lipid lyotropic liquid crystalline nanocarriers using a microfluidic platform. J Colloid Interface Sci 2023; 634:279-289. [PMID: 36542965 DOI: 10.1016/j.jcis.2022.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
HYPOTHESIS Non-lamellar lyotropic liquid crystal nanoparticles (LLCNPs) are gaining significant interest in the fields of drug delivery and nanomedicine. Traditional, top-down formulation strategies for LLCNPs are typically low-throughput, can lack controllability and reproducibility in the particle size distribution, and may be unsuitable for loading more fragile therapeutics. The development of a controllable, reproducible, scalable, and high-throughput strategy is urgently needed. EXPERIMENTS Monoolein (MO)-based LLCNPs with various stabilizers (F127, F108, and Tween 80) and phytantriol (PT)-F127 cubosomes were produced at various flow conditions via a bottom-up method using a microfluidic platform. FINDINGS This simple enabling strategy was used to formulate LLCNPs with lower polydispersity compared to the traditional top-down homogenization method. Significantly, particle size could be quantitatively controlled by varying the overall flow-rate; a scaling law was identified between nanoparticle mean size and the total flow rate (Q) of meansize∼Q-0.15 for MO cubosomes and meansize∼Q-0.19 for PT cubosomes (at a fixed flow rate ratio). Effective size control was achieved for a range of cubosome formulations involving different lipids and stabilizers. The formulation of stable, drug-loaded cubosomes with high encapsulation efficiency using this method was exemplified using calcein as a model drug. This work will further promote the utilisation of LLCNPs in nanomedicine and facilitate their clinical translation.
Collapse
Affiliation(s)
- Haitao Yu
- School of Science, STEM College, RMIT University, Victoria, Australia.
| | - Brendan P Dyett
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Jamie B Strachan
- School of Science, STEM College, RMIT University, Victoria, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Victoria, Australia.
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Victoria, Australia.
| |
Collapse
|
9
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
10
|
Yaghmur A, Hamad I. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions. Molecules 2022; 27:4602. [PMID: 35889473 PMCID: PMC9323596 DOI: 10.3390/molecules27144602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
With the ability to cross biological barriers, encapsulate and efficiently deliver drugs and nucleic acid therapeutics, and protect the loaded cargos from degradation, different soft polymer and lipid nanoparticles (including liposomes, cubosomes, and hexosomes) have received considerable interest in the last three decades as versatile platforms for drug delivery applications and for the design of vaccines. Hard nanocrystals (including gold nanoparticles and quantum dots) are also attractive for use in various biomedical applications. Here, microfluidics provides unique opportunities for the continuous synthesis of these hard and soft nanomaterials with controllable shapes and sizes, and their in situ characterization through manipulation of the flow conditions and coupling to synchrotron small-angle X-ray (SAXS), wide-angle scattering (WAXS), or neutron (SANS) scattering techniques, respectively. Two-dimensional (2D) and three-dimensional (3D) microfluidic devices are attractive not only for the continuous production of monodispersed nanomaterials, but also for improving our understanding of the involved nucleation and growth mechanisms during the formation of hard nanocrystals under confined geometry conditions. They allow further gaining insight into the involved dynamic structural transitions, mechanisms, and kinetics during the generation of self-assembled nanostructures (including drug nanocarriers) at different reaction times (ranging from fractions of seconds to minutes). This review provides an overview of recently developed 2D and 3D microfluidic platforms for the continuous production of nanomaterials, and their simultaneous use in in situ characterization investigations through coupling to nanostructural characterization techniques (e.g., SAXS, WAXS, and SANS).
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Islam Hamad
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba 11821, Jordan;
| |
Collapse
|
11
|
Contini C, Hu W, Elani Y. Manufacturing polymeric porous capsules. Chem Commun (Camb) 2022; 58:4409-4419. [PMID: 35298578 PMCID: PMC8981216 DOI: 10.1039/d1cc06565c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Polymeric porous capsules represent hugely promising systems that allow a size-selective through-shell material exchange with their surroundings. They have vast potential in applications ranging from drug delivery and chemical microreactors to artificial cell science and synthetic biology. Due to their porous core-shell structure, polymeric porous capsules possess an enhanced permeability that enables the exchange of small molecules while retaining larger compounds and macromolecules. The cross-capsule transfer of material is regulated by their pore size cut-off, which depends on the molecular composition and adopted fabrication method. This review outlines the main strategies for manufacturing polymeric porous capsules and provides some practical guidance for designing polymeric capsules with controlled pore size.
Collapse
Affiliation(s)
- Claudia Contini
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Wenyi Hu
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
- FabriCELL, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
12
|
Wang J, Chen G, Liu N, Han X, Zhao F, Zhang L, Chen P. Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes. Adv Colloid Interface Sci 2022; 302:102638. [PMID: 35299136 DOI: 10.1016/j.cis.2022.102638] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
In the past decades, the striking development of cationic polypeptides and cell-penetrating peptides (CPPs) tailored for small interfering RNA (siRNA) delivery has been fuelled by the conception of nuclear acid therapy and precision medicine. Owing to their amino acid compositions, inherent secondary structures as well as diverse geometrical shapes, peptides or peptide-containing polymers exhibit good biodegradability, high flexibility, and bio-functional diversity as nonviral siRNA vectors. Also, a variety of noncovalent nanocomplexes could be built via self-assembling and electrostatic interactions between cationic peptides and siRNAs. Although the peptide/siRNA nanocomplex-based RNAi therapies, STP705 and MIR-19, are under clinical trials, a guideline addressing the current bottlenecks of peptide/siRNA nanocomplex delivery is in high demand for future research and development. In this review, we present strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes in the treatment of genetic disorders. Through thorough analysis of those RNAi formulations using different delivery strategies, we seek to shed light on the rationale of peptide design and modification in constructing robust siRNA delivery systems, including targeted and co-delivery systems. Based on this, we provide a timely and comprehensive understanding of how to engineer biocompatible and efficient peptide-based siRNA vectors.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Guang Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Nan Liu
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Xiaoxia Han
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China.
| |
Collapse
|
13
|
Pandey AK, Piplani N, Mondal T, Katranidis A, Bhattacharya J. Efficient delivery of hydrophobic drug, Cabazitaxel, using Nanodisc: A nano sized free standing planar lipid bilayer. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Dimitriou P, Li J, Tornillo G, McCloy T, Barrow D. Droplet Microfluidics for Tumor Drug-Related Studies and Programmable Artificial Cells. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000123. [PMID: 34267927 PMCID: PMC8272004 DOI: 10.1002/gch2.202000123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Indexed: 05/11/2023]
Abstract
Anticancer drug development is a crucial step toward cancer treatment, that requires realistic predictions of malignant tissue development and sophisticated drug delivery. Tumors often acquire drug resistance and drug efficacy, hence cannot be accurately predicted in 2D tumor cell cultures. On the other hand, 3D cultures, including multicellular tumor spheroids (MCTSs), mimic the in vivo cellular arrangement and provide robust platforms for drug testing when grown in hydrogels with characteristics similar to the living body. Microparticles and liposomes are considered smart drug delivery vehicles, are able to target cancerous tissue, and can release entrapped drugs on demand. Microfluidics serve as a high-throughput tool for reproducible, flexible, and automated production of droplet-based microscale constructs, tailored to the desired final application. In this review, it is described how natural hydrogels in combination with droplet microfluidics can generate MCTSs, and the use of microfluidics to produce tumor targeting microparticles and liposomes. One of the highlights of the review documents the use of the bottom-up construction methodologies of synthetic biology for the formation of artificial cellular assemblies, which may additionally incorporate both target cancer cells and prospective drug candidates, as an integrated "droplet incubator" drug assay platform.
Collapse
Affiliation(s)
- Pantelitsa Dimitriou
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Jin Li
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Giusy Tornillo
- Hadyn Ellis BuildingCardiff UniversityMaindy RoadCardiffCF24 4HQUK
| | - Thomas McCloy
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - David Barrow
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| |
Collapse
|
15
|
Ip T, Li Q, Brooks N, Elani Y. Manufacture of Multilayered Artificial Cell Membranes through Sequential Bilayer Deposition on Emulsion Templates. Chembiochem 2021; 22:2275-2281. [PMID: 33617681 PMCID: PMC8360201 DOI: 10.1002/cbic.202100072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Efforts to manufacture artificial cells that replicate the architectures, processes and behaviours of biological cells are rapidly increasing. Perhaps the most commonly reconstructed cellular structure is the membrane, through the use of unilamellar vesicles as models. However, many cellular membranes, including bacterial double membranes, nuclear envelopes, and organelle membranes, are multilamellar. Due to a lack of technologies available for their controlled construction, multilayered membranes are not part of the repertoire of cell-mimetic motifs used in bottom-up synthetic biology. To address this, we developed emulsion-based technologies that allow cell-sized multilayered vesicles to be produced layer-by-layer, with compositional control over each layer, thus enabling studies that would otherwise remain inaccessible. We discovered that bending rigidities scale with the number of layers and demonstrate inter-bilayer registration between coexisting liquid-liquid domains. These technologies will contribute to the exploitation of multilayered membrane structures, paving the way for incorporating protein complexes that span multiple bilayers.
Collapse
Affiliation(s)
- Tsoi Ip
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White CityLondonW12 0BZUK
| | - Qien Li
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White CityLondonW12 0BZUK
| | - Nick Brooks
- Department of ChemistryImperial College LondonMolecular Sciences Research Hub White CityLondonW12 0BZUK
| | - Yuval Elani
- Department of Chemical EngineeringImperial College London South KensingtonLondonSW7 2AZUK
| |
Collapse
|
16
|
Ilhan-Ayisigi E, Ghazal A, Sartori B, Dimaki M, Svendsen WE, Yesil-Celiktas O, Yaghmur A. Continuous Microfluidic Production of Citrem-Phosphatidylcholine Nano-Self-Assemblies for Thymoquinone Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1510. [PMID: 34200457 PMCID: PMC8229635 DOI: 10.3390/nano11061510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 01/25/2023]
Abstract
Lamellar and non-lamellar liquid crystalline nanodispersions, including liposomes, cubosomes, and hexosomes are attractive platforms for drug delivery, bio-imaging, and related pharmaceutical applications. As compared to liposomes, there is a modest number of reports on the continuous production of cubosomes and hexosomes. Using a binary lipid mixture of citrem and soy phosphatidylcholine (SPC), we describe the continuous production of nanocarriers for delivering thymoquinone (TQ, a substance with various therapeutic potentials) by employing a commercial microfluidic hydrodynamic flow-focusing chip. In this study, nanoparticle tracking analysis (NTA) and synchrotron small-angle X-ray scattering (SAXS) were employed to characterize TQ-free and TQ-loaded citrem/SPC nanodispersions. Microfluidic synthesis led to formation of TQ-free and TQ-loaded nanoparticles with mean sizes around 115 and 124 nm, and NTA findings indicated comparable nanoparticle size distributions in these nanodispersions. Despite the attractiveness of the microfluidic chip for continuous production of citrem/SPC nano-self-assemblies, it was not efficient as comparable mean nanoparticle sizes were obtained on employing a batch (discontinuous) method based on low-energy emulsification method. SAXS results indicated the formation of a biphasic feature of swollen lamellar (Lα) phase in coexistence with an inverse bicontinuous cubic Pn3m phase in all continuously produced TQ-free and TQ-loaded nanodispersions. Further, a set of SAXS experiments were conducted on samples prepared using the batch method for gaining further insight into the effects of ethanol and TQ concentration on the structural features of citrem/SPC nano-self-assemblies. We discuss these effects and comment on the need to introduce efficient microfluidic platforms for producing nanocarriers for delivering TQ and other therapeutic agents.
Collapse
Affiliation(s)
- Esra Ilhan-Ayisigi
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova-Izmir, Turkey; (E.I.-A.); (O.Y.-C.)
- Genetic and Bioengineering Department, Faculty of Engineering and Architecture, Kirsehir Ahi Evran University, 40100 Kirsehir, Turkey
| | - Aghiad Ghazal
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark;
- Global Research Technologies, Novo Nordisk, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/4, 8010 Graz, Austria;
| | - Maria Dimaki
- DTU Bioengineering—Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, 2800 Kongens Lyngby, Denmark; (M.D.); (W.E.S.)
| | - Winnie Edith Svendsen
- DTU Bioengineering—Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 221, 2800 Kongens Lyngby, Denmark; (M.D.); (W.E.S.)
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova-Izmir, Turkey; (E.I.-A.); (O.Y.-C.)
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark;
| |
Collapse
|