1
|
McGlumphy S, Damai A, Salameh L, Corbin GB, Wang Q, Markiewicz J, Mosher JJ, Spitzer N, Quiñones R. Biocompatible antibiotic-coupled nickel-titanium nanoparticles as a potential coating material for biomedical devices. Heliyon 2024; 10:e31434. [PMID: 38831845 PMCID: PMC11145499 DOI: 10.1016/j.heliyon.2024.e31434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
The challenges facing metallic implants for reconstructive surgery include the leaching of toxic metal ions, a mismatch in elastic modulus between the implant and the treated tissue, and the risk of infection. These problems can be addressed by passivating the metal surface with an organic substrate and incorporating antibiotic molecules. Nitinol (NiTi), a nickel-titanium alloy, is used in devices for biomedical applications due to its shape memory and superelasticity. However, unmodified NiTi carries a risk of localized nickel toxicity and inadequately supports angiogenesis or neuroregeneration due to limited cell adhesion, poor biomineralization, and little antibacterial activity. To address these challenges, NiTi nanoparticles were modified using self-assembled phosphonic acid monolayers and functionalized with the antibiotics ceftriaxone and vancomycin via the formation of an amide. Surface modifications were monitored to confirm that phosphonic acid modifications were present on NiTi nanoparticles and 100% of the samples formed ordered films. Modifications were stable for more than a year. Elemental composition showed the presence of nickel, titanium, and phosphorus (1.9% for each sample) after surface modifications. Dynamic light scattering analysis suggested some agglomeration in solution. However, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy confirmed a particle size distribution of <100 nm, the even distribution of nanoparticles on coverslips, and elemental composition before and after cell culture. B35 neuroblastoma cells exhibited no inhibition of survival and extended neurites of approximately 100 μm in total length when cultured on coverslips coated with only poly-l-lysine or with phosphonic acid-modified NiTi, indicating high biocompatibility. The ability to support neural cell growth and differentiation makes modified NiTi nanoparticles a promising coating for surfaces in metallic bone and nerve implants. NiTi nanoparticles functionalized with ceftriaxone inhibited Escherichia coli and Serratia marcescens (SM6) at doses of 375 and 750 μg whereas the growth of Bacillus subtilis was inhibited by a dose of only 37.5 μg. NiTi-vancomycin was effective against B. subtilis at all doses even after mammalian cell culture. These are common bacteria associated with infected implants, further supporting the potential use of functionalized NiTi in coating reconstructive implants.
Collapse
Affiliation(s)
- Sarah McGlumphy
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Aakriti Damai
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Lena Salameh
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| | - Gabriell B. Corbin
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Qiang Wang
- Shared Research Facilities, West Virginia University, Morgantown, WV, 25606, USA
| | - John Markiewicz
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| | - Jennifer J. Mosher
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Nadja Spitzer
- Department of Biological Sciences, Marshall University, Huntington, WV, 25755, USA
| | - Rosalynn Quiñones
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| |
Collapse
|
2
|
Di Giulio T, De Benedetto GE, Ditaranto N, Malitesta C, Mazzotta E. Insights into Plastic Degradation Processes in Marine Environment by X-ray Photoelectron Spectroscopy Study. Int J Mol Sci 2024; 25:5060. [PMID: 38791107 PMCID: PMC11121657 DOI: 10.3390/ijms25105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The present study employs X-ray photoelectron spectroscopy (XPS) to analyze plastic samples subjected to degradation processes with the aim to gain insight on the relevant chemical processes and disclose fragmentation mechanisms. Two model plastics, namely polystyrene (PS) and polyethylene (PE), are selected and analyzed before and after artificial UV radiation-triggered weathering, under simulated environmental hydrodynamic conditions, in fresh and marine water for different time intervals. The object of the study is to identify and quantify chemical groups possibly evidencing the occurrence of hydrolysis and oxidation reactions, which are the basis of degradation processes in the environment, determining macroplastic fragmentation. Artificially weathered plastic samples are analyzed also by Raman and FT-IR spectroscopy. Changes in surface chemistry with weathering are revealed by XPS, involving the increase in chemical moieties (hydroxyl, carbonyl, and carboxyl functionalities) which can be correlated with the degradation processes responsible for macroplastic fragmentation. On the other hand, the absence of significant modifications upon plastics weathering evidenced by Raman and FT-IR spectroscopy confirms the importance of investigating plastics surface, which represents the very first part of the materials exposed to degradation agents, thus revealing the power of XPS studies for this purpose. The XPS data on experimentally weathered particles are compared with ones obtained on microplastics collected from real marine environment for investigating the occurring degradation processes.
Collapse
Affiliation(s)
- Tiziano Di Giulio
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (T.D.G.); (C.M.)
| | - Giuseppe Egidio De Benedetto
- Laboratorio di Spettrometria di Massa Analitica ed Isotopica, Dipartimento di Beni Culturali, Università del Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Nicoletta Ditaranto
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy;
- CSGI (Center for Colloid and Surface Science) Bari Unit, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Cosimino Malitesta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (T.D.G.); (C.M.)
| | - Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (T.D.G.); (C.M.)
| |
Collapse
|
3
|
Muramoto S, Graham DJ, Castner DG. ToF-SIMS analysis of ultrathin films and their fragmentation patterns. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY. A, VACUUM, SURFACES, AND FILMS : AN OFFICIAL JOURNAL OF THE AMERICAN VACUUM SOCIETY 2024; 42:023416. [PMID: 38328692 PMCID: PMC10846908 DOI: 10.1116/6.0003249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/10/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Organic thin films are of great interest due to their intriguing interfacial and functional properties, especially for device applications such as thin-film transistors and sensors. As their thickness approaches single nanometer thickness, characterization and interpretation of the extracted data become increasingly complex. In this study, plasma polymerization is used to construct ultrathin films that range in thickness from 1 to 20 nm, and time-of-flight secondary ion mass spectrometry coupled with principal component analysis is used to investigate the effects of film thickness on the resulting spectra. We demonstrate that for these cross-linked plasma polymers, at these thicknesses, the observed trends are different from those obtained from thicker films with lower degrees of cross-linking: contributions from ambient carbon contamination start to dominate the mass spectrum; cluster-induced nonlinear enhancement in secondary ion yield is no longer observed; extent of fragmentation is higher due to confinement of the primary ion energy; and the size of the primary ion source also affects fragmentation (e.g., Bi1 versus Bi5). These differences illustrate that care must be taken in choosing the correct primary ion source as well as in interpreting the data.
Collapse
Affiliation(s)
- Shin Muramoto
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | | | | |
Collapse
|
4
|
Sitkov N, Ryabko A, Moshnikov V, Aleshin A, Kaplun D, Zimina T. Hybrid Impedimetric Biosensors for Express Protein Markers Detection. MICROMACHINES 2024; 15:181. [PMID: 38398911 PMCID: PMC10890403 DOI: 10.3390/mi15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Impedimetric biosensors represent a powerful and promising tool for studying and monitoring biological processes associated with proteins and can contribute to the development of new approaches in the diagnosis and treatment of diseases. The basic principles, analytical methods, and applications of hybrid impedimetric biosensors for express protein detection in biological fluids are described. The advantages of this type of biosensors, such as simplicity and speed of operation, sensitivity and selectivity of analysis, cost-effectiveness, and an ability to be integrated into hybrid microfluidic systems, are demonstrated. Current challenges and development prospects in this area are analyzed. They include (a) the selection of materials for electrodes and formation of nanostructures on their surface; (b) the development of efficient methods for biorecognition elements' deposition on the electrodes' surface, providing the specificity and sensitivity of biosensing; (c) the reducing of nonspecific binding and interference, which could affect specificity; (d) adapting biosensors to real samples and conditions of operation; (e) expanding the range of detected proteins; and, finally, (f) the development of biosensor integration into large microanalytical system technologies. This review could be useful for researchers working in the field of impedimetric biosensors for protein detection, as well as for those interested in the application of this type of biosensor in biomedical diagnostics.
Collapse
Affiliation(s)
- Nikita Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Andrey Ryabko
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Vyacheslav Moshnikov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
| | - Andrey Aleshin
- Laboratory of Nonequilibrium Processes in Semiconductors, Ioffe Institute, 26 Politekhnicheskaya, 194021 Saint Petersburg, Russia;
| | - Dmitry Kaplun
- Artificial Intelligence Research Institute, China University of Mining and Technology, 1 Daxue Road, Xuzhou 221116, China;
- Department of Automation and Control Processes, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Tatiana Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (V.M.); (T.Z.)
- Engineering Centre for Microtechnology and Diagnostics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| |
Collapse
|
5
|
Faase RA, Keeling NM, Plaut JS, Leycam C, Munares GA, Hinds MT, Baio JE, Jurney PL. Temporal Changes in the Surface Chemistry and Topography of Reactive Ion Plasma-Treated Poly(vinyl alcohol) Alter Endothelialization Potential. ACS APPLIED MATERIALS & INTERFACES 2024; 16:389-400. [PMID: 38117934 PMCID: PMC10788828 DOI: 10.1021/acsami.3c16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Synthetic small-diameter vascular grafts (<6 mm) are used in the treatment of cardiovascular diseases, including coronary artery disease, but fail much more readily than similar grafts made from autologous vascular tissue. A promising approach to improve the patency rates of synthetic vascular grafts is to promote the adhesion of endothelial cells to the luminal surface of the graft. In this study, we characterized the surface chemical and topographic changes imparted on poly(vinyl alcohol) (PVA), an emerging hydrogel vascular graft material, after exposure to various reactive ion plasma (RIP) surface treatments, how these changes dissipate after storage in a sealed environment at standard temperature and pressure, and the effect of these changes on the adhesion of endothelial colony-forming cells (ECFCs). We showed that RIP treatments including O2, N2, or Ar at two radiofrequency powers, 50 and 100 W, improved ECFC adhesion compared to untreated PVA and to different degrees for each RIP treatment, but that the topographic and chemical changes responsible for the increased cell affinity dissipate in samples treated and allowed to age for 230 days. We characterized the effect of aging on RIP-treated PVA using an assay to quantify ECFCs on RIP-treated PVA 48 h after seeding, atomic force microscopy to probe surface topography, scanning electron microscopy to visualize surface modifications, and X-ray photoelectron spectroscopy to investigate surface chemistry. Our results show that after treatment at higher RF powers, the surface exhibits increased roughness and greater levels of charged nitrogen species across all precursor gases and that these surface modifications are beneficial for the attachment of ECFCs. This study is important for our understanding of the stability of surface modifications used to promote the adhesion of vascular cells such as ECFCs.
Collapse
Affiliation(s)
- Ryan A. Faase
- School
of Chemical, Biological, and Environmental Engineering, Oregon State University, 103 Gleeson Hall, Corvallis, Oregon 97331, United States
| | - Novella M. Keeling
- Biomedical
Engineering Program, University of Colorado
Boulder, 1111 Engineering Drive 521 UCB, Boulder, Colorado 80309-0521, United States
- Department
of Biomedical Engineering, Oregon Health
and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Justin S. Plaut
- Cancer
Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Christian Leycam
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| | - Gabriela Acevedo Munares
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| | - Monica T. Hinds
- Department
of Biomedical Engineering, Oregon Health
and Science University, 3303 SW Bond Ave, Portland, Oregon 97239, United States
| | - Joe E. Baio
- School
of Chemical, Biological, and Environmental Engineering, Oregon State University, 103 Gleeson Hall, Corvallis, Oregon 97331, United States
| | - Patrick L. Jurney
- Department
of Biomedical Engineering, San José
State University, One Washington Square, San Jose, California 95112-3613, United States
| |
Collapse
|
6
|
Gamble LJ, Radford D, Grainger DW, Castner DG. Quantitative evaluation of perfluorinated alkanethiol molecular order on gold surfaces. Biointerphases 2023; 18:031009. [PMID: 37306557 PMCID: PMC10264085 DOI: 10.1116/6.0002720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Self-assembled monolayers (SAMs) of perfluoroalkanethiols [CF3(CF2)xCH2CH2SH (x = 3, 5, 7, and 9)] on gold were characterized by x-ray photoelectron spectroscopy (XPS), near edge x-ray absorption fine structure (NEXAFS), and static time-of-flight secondary ion mass spectrometry (ToF-SIMS). Perfluoroalkanethiols of several chain lengths were synthesized using a known hydride reduction method for transforming commercially available perfluoroalkyliodides to corresponding perfluoroalkanethiols. This strategy provides improved product yields compared to other known routes based on hydrolysis from the common thioacetyl perfluoroalkyl intermediate. Angle-dependent XPS analysis revealed that CF3(CF2)xCH2CH2SH (x = 5, 7, and 9; F6, F8, and F10, respectively) SAMs on gold exhibited significant enrichment of the terminal CF3 group at the outer monolayer surface with the sulfur present as a metal-bound thiolate located at the monolayer-gold interface. XPS of the CF3(CF2)3CH2CH2SH (F4) monolayer revealed a thin film with a significant (>50%) amount of hydrocarbon contamination consistent with poorly organized monolayers, while the longest thiol (F10) showed XPS signals attributed to substantial ordering and anisotropy. ToF-SIMS spectra from all four SAMs contained molecular ions representative of the particular perfluorinated thiol used to prepare the monolayer. NEXAFS methods were used to determine degrees of ordering and average tilt for molecules comprising monolayers. The SAMs prepared from the longest (F10) thiols exhibited the highest degree of ordering with the molecular axis nearly perpendicular to the gold surface. The degree of ordering decreased significantly with decreasing length of the perfluorocarbon tail.
Collapse
Affiliation(s)
- Lara J. Gamble
- Department of Bioengineering, National ESCA and Surface Analysis Center for Biomedical Problems, Box 351653 Seattle, Washington 98195-1653
| | - David Radford
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872
| | | | | |
Collapse
|
7
|
Graham DJ, Gamble LJ. Back to the basics of time-of-flight secondary ion mass spectrometry of bio-related samples. I. Instrumentation and data collection. Biointerphases 2023; 18:021201. [PMID: 36990800 PMCID: PMC10063322 DOI: 10.1116/6.0002477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used widely throughout industrial and academic research due to the high information content of the chemically specific data it produces. Modern ToF-SIMS instruments can generate high mass resolution data that can be displayed as spectra and images (2D and 3D). This enables determining the distribution of molecules across and into a surface and provides access to information not obtainable from other methods. With this detailed chemical information comes a steep learning curve in how to properly acquire and interpret the data. This Tutorial is aimed at helping ToF-SIMS users to plan for and collect ToF-SIMS data. The second Tutorial in this series will cover how to process, display, and interpret ToF-SIMS data.
Collapse
|
8
|
Cometta S, Jones RT, Juárez-Saldivar A, Donose BC, Yasir M, Bock N, Dargaville TR, Bertling K, Brünig M, Rakić AD, Willcox M, Hutmacher DW. Melimine-Modified 3D-Printed Polycaprolactone Scaffolds for the Prevention of Biofilm-Related Biomaterial Infections. ACS NANO 2022; 16:16497-16512. [PMID: 36245096 PMCID: PMC9620410 DOI: 10.1021/acsnano.2c05812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Biomaterial-associated infections are one of the major causes of implant failure. These infections result from persistent bacteria that have adhered to the biomaterial surface before, during, or after surgery and have formed a biofilm on the implant's surface. It is estimated that 4 to 10% of implant surfaces are contaminated with bacteria; however, the infection rate can be as high as 30% in intensive care units in developed countries and as high as 45% in developing countries. To date, there is no clinical solution to prevent implant infection without relying on the use of high doses of antibiotics supplied systemically and/or removal of the infected device. In this study, melimine, a chimeric cationic peptide that has been tested in Phase I and II human clinical trials, was immobilized onto the surface of 3D-printed medical-grade polycaprolactone (mPCL) scaffolds via covalent binding and adsorption. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra of melimine-treated surfaces confirmed immobilization of the peptide, as well as its homogeneous distribution throughout the scaffold surface. Amino acid analysis showed that melimine covalent and noncovalent immobilization resulted in a peptide density of ∼156 and ∼533 ng/cm2, respectively. Furthermore, we demonstrated that the immobilization of melimine on mPCL scaffolds by 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride (EDC) coupling and noncovalent interactions resulted in a reduction of Staphylococcus aureus colonization by 78.7% and 76.0%, respectively, in comparison with the nonmodified control specimens. Particularly, the modified surfaces maintained their antibacterial properties for 3 days, which resulted in the inhibition of biofilm formation in vitro. This system offers a biomaterial strategy to effectively prevent biofilm-related infections on implant surfaces without relying on the use of prophylactic antibiotic treatment.
Collapse
Affiliation(s)
- Silvia Cometta
- Faculty
of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Australian
Research Council Training Centre for Multiscale 3D Imaging, Modelling
and Manufacturing (M3D Innovation), Queensland
University of Technology, Kelvin
Grove, QLD 4059, Australia
- Max
Planck Queensland Centre, Queensland University
of Technology, Brisbane, QLD 4000, Australia
| | - Robert T. Jones
- Central
Analytical Research Facility (CARF), Queensland
University of Technology, Brisbane, QLD 4000, Australia
- Centre
for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Alfredo Juárez-Saldivar
- Unidad Académica
Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa 88740, Mexico
| | - Bogdan C. Donose
- School
of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Muhammad Yasir
- School
of Optometry and Vision Science, University
of New South Wales, Sydney, NSW 2033, Australia
| | - Nathalie Bock
- Australian
Research Council Training Centre for Multiscale 3D Imaging, Modelling
and Manufacturing (M3D Innovation), Queensland
University of Technology, Kelvin
Grove, QLD 4059, Australia
- Max
Planck Queensland Centre, Queensland University
of Technology, Brisbane, QLD 4000, Australia
- Faculty
of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Translational Research
Institute, Woolloongabba, QLD 4102, Australia
| | - Tim R. Dargaville
- Centre
for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Karl Bertling
- School
of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael Brünig
- School
of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aleksandar D. Rakić
- School
of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark Willcox
- School
of Optometry and Vision Science, University
of New South Wales, Sydney, NSW 2033, Australia
| | - Dietmar W. Hutmacher
- Faculty
of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Australian
Research Council Training Centre for Multiscale 3D Imaging, Modelling
and Manufacturing (M3D Innovation), Queensland
University of Technology, Kelvin
Grove, QLD 4059, Australia
- Max
Planck Queensland Centre, Queensland University
of Technology, Brisbane, QLD 4000, Australia
- Translational Research
Institute, Woolloongabba, QLD 4102, Australia
- Australian
Research Council Industrial Transformation Training Centre in Additive
Biomanufacturing, Queensland University
of Technology, Brisbane, QLD 4059, Australia
- Australian
Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
9
|
Zorn G, Simonovsky FI, Ratner BD, Castner DG. XPS and ToF-SIMS Characterization of New Biodegradable Poly(Peptide-Urethane-Urea) Block Copolymers. Adv Healthc Mater 2022; 11:e2100894. [PMID: 34347389 PMCID: PMC8814053 DOI: 10.1002/adhm.202100894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Indexed: 11/09/2022]
Abstract
New, linear, segmented poly(peptide-urethane-urea) (PPUU) block copolymers are synthesized and their surface compositions are characterized with angle dependent X-ray photoelectron spectroscopy (ADXPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). These new PPUU block copolymers contain three types of segments. The soft segment (SS) is poly(caprolactone diol) (PCL). The hard segment is lysine diisocyanate with a hydrazine chain extender. The oligopeptide segment (OPS) contains three types of amino acids (proline, hydroxyproline, and glycine). Incorporation of the OPS into the polyurethane backbone is done to provide a synthetic polymer material with controllable biodegradation properties. As biodegradation processes normally are initiated at the interface between the biomaterial and the living tissue, it is important to characterize the surface composition of biomaterials. ADXPS and ToF-SIMS results show that the surfaces of all four polymers are enriched with the PCL SS, the most hydrophobic component of the three polymer segments.
Collapse
Affiliation(s)
- Gilad Zorn
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750
| | - Felix I. Simonovsky
- Department of Bioengineering, University of Washington, Seattle, WA 98195-1750
| | - Buddy D. Ratner
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750
- Department of Bioengineering, University of Washington, Seattle, WA 98195-1750
| | - David G. Castner
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750
- Department of Bioengineering, University of Washington, Seattle, WA 98195-1750
| |
Collapse
|
10
|
Weidner T, Castner DG. Developments and Ongoing Challenges for Analysis of Surface-Bound Proteins. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:389-412. [PMID: 33979545 PMCID: PMC8522203 DOI: 10.1146/annurev-anchem-091520-010206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proteins at surfaces and interfaces play important roles in the function and performance of materials in applications ranging from diagnostic assays to biomedical devices. To improve the performance of these materials, detailed molecular structure (conformation and orientation) along with the identity and concentrations of the surface-bound proteins on those materials must be determined. This article describes radiolabeling, surface plasmon resonance, quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, sum frequency generation spectroscopy, and computational techniques along with the information each technique provides for characterizing protein films. A multitechnique approach using both experimental and computation methods is required for these investigations. Although it is now possible to gain much insight into the structure of surface-bound proteins, it is still not possible to obtain the same level of structural detail about proteins on surfaces as can be obtained about proteins in crystals and solutions, especially for large, complex proteins. However, recent results have shown it is possible to obtain detailed structural information (e.g., backbone and side chain orientation) about small peptides (5-20 amino sequences) on surfaces. Current studies are extending these investigations to small proteins such as protein G B1 (∼6 kDa). Approaches for furthering the capabilities for characterizing the molecular structure of surface-bound proteins are proposed.
Collapse
Affiliation(s)
- Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark;
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|