1
|
Duan H, Zhang M, Chen Z, Wang X, Xiao F, Li W. Unveiling a pyrroloindoline diketopiperazine biosynthetic pathway featuring a phytoene-synthase-like family prenyltransferase with distinct regioselectivity. Bioorg Chem 2025; 160:108448. [PMID: 40215947 DOI: 10.1016/j.bioorg.2025.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 05/04/2025]
Abstract
Pyrroloindoline-containing natural products are a group of molecules with diverse biological activities. Herein, we identified a cryptic cyclodipeptide synthase (CDPS) gene cluster (lan) from a deepsea-derived Streptomyces strain using the phytoene-synthase-like (PSL) family prenyltransferase (PT) as a probe. Heterologous expression of the lan gene cluster in Streptomyces albus J1074 led to the production of two reversely C5'-prenylated pyrroloindoline-containing diketopiperazines (DKPs), lansais A (4) and B (5). Gene inactivation and biochemical assays established its biosynthetic pathway as follows: LanA, a fused CDPS-methyltransferase, sequentially generates mono- and bis-pyrroloindoline intermediates (2 and 3) viacyclo (l-Trp-l-Trp) formation and C3/C3'-methylation; subsequently, N-methyltransferase LanC installs the methyl group at N1/N1' followed by installation of the prenyl moiety at C5' by the PSL family PT LanB. Notably, compounds 4 and 5 demonstrated potent anti-vesicular stomatitis virus (VSV) activity, with a 50 % virus inhibitory concentration (IC50) values of 1.98-2.22 μM, significantly stronger than that of ribavirin (IC50 = 14.27 μM), revealing the critical role of the prenyl moiety in anti-VSV activity. Taking advantage of the catalytic promiscuity of LanB, two new lansai derivatives with C5'-reverse or C7'-regular dimethylallyl moiety (9 and 10) were obtained, achieving IC50 value as low as 0.31 μM (10). Of note, the regioselectivity of LanB is distinct from all the other reported PSL family PTs. Our study enriches the biosynthetic machineries of pyrroloindoline-containing DKPs, and lays the foundation for further increasing the structural diversity of this compound family.
Collapse
Affiliation(s)
- He Duan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Meifang Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Zhenshan Chen
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Fei Xiao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China.
| |
Collapse
|
2
|
Zhang LH, Xie Y, Xuan J. Dearomatizative aminoetherification and diamination of indoles enabled by photochemical nitrene transfer reactions. Chem Commun (Camb) 2025. [PMID: 40366359 DOI: 10.1039/d5cc02416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
In this study, we report a catalyst free, dearomatizative aminoetherification and diamination of indoles by using photo-promoted nitrene transfer reaction as the key step. A wide range of indoline scaffolds can be obtained in moderate to good yields. This approach can be further applied to the synthesis of three kinds of bioactive polycyclic ring structures. A series of mechanistic experiments well support the proposed nitrene transfer process.
Collapse
Affiliation(s)
- Li-Hua Zhang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, P. R. China.
| | - Yang Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, P. R. China.
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, P. R. China.
| |
Collapse
|
3
|
Birbaum L, Ndiaye M, Hachem M, Perrio S, De Paolis M, Chataigner I. Dearomative (3 + 2) Cycloadditions of 3-Nitroheteroarenes with Allenyl Sulfones Mediated by Ion Pair Organocatalysis. Org Lett 2025; 27:1729-1734. [PMID: 39921640 DOI: 10.1021/acs.orglett.5c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
We report the first example of dearomative (3 + 2) cycloadditions of 3-nitro(aza)-indole, -benzofuran, and -benzothiophene derivatives in the presence of allenyl sulfones, using sulfinate ammonium ion pairs as organocatalytic promoters. The methodology provides a new, facile, and efficient protocol for the synthesis of functionalized 2,3-fused cyclopentannulated indolines and dihydrobenzofurans.
Collapse
Affiliation(s)
- Léo Birbaum
- Université de Rouen Normandie, CNRS, Normandie Université, INSA Rouen Normandie, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Moussa Ndiaye
- Université de Rouen Normandie, CNRS, Normandie Université, INSA Rouen Normandie, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Mahmoud Hachem
- Université de Rouen Normandie, CNRS, Normandie Université, INSA Rouen Normandie, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Stéphane Perrio
- Université de Caen Normandie, ENSICAEN, CNRS, LCMT, Normandie Université, 14000 Caen, France
| | - Michael De Paolis
- Université de Rouen Normandie, CNRS, Normandie Université, INSA Rouen Normandie, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Isabelle Chataigner
- Université de Rouen Normandie, CNRS, Normandie Université, INSA Rouen Normandie, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT UMR7616, 75005 Paris, France
| |
Collapse
|
4
|
Haase M, Weiergräber OH, David B, Pfirmann EL, Paschold B, Gohlke H, Pietruszka J. Characterization of a C-methyltransferase from Streptomyces griseoviridis - crystal structure, mechanism, and substrate scope. Chem Sci 2025:d4sc07300b. [PMID: 39926702 PMCID: PMC11804793 DOI: 10.1039/d4sc07300b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Despite the presence of pyrroloindoles in many natural products with diverse biological activities, their synthesis remains challenging in terms of stereoselectivity, especially with respect to methylation at the indole C3 position. In the present study, the pyrroloindole motif in tryptophan-based diketopiperazines (DKPs) is synthesized using the SAM-dependent methyltransferase SgMT from Streptomyces griseoviridis. The three-dimensional structure of this indole C3-methyltransferase was determined by X-ray crystallography, providing insights into the enzyme. The complex active site was explored by site-directed mutagenesis, highlighting an intriguing network of tyrosine side chains that is involved in catalytic activity. The enzyme's precise substrate requirements were characterized using a broad panel of methylation educts, while molecular docking and molecular dynamics simulations revealed the catalytic binding mode of the cyclo-(ll)-ditryptophan substrate. This study provides an in-depth account of the structure and catalytic properties of SgMT, which may apply to other diketopiperazine-targeting indole C3-methyltransferases, thus paving the way for their optimization as biocatalysts.
Collapse
Affiliation(s)
- Mona Haase
- Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Institute for Bioorganic Chemistry & Bioeconomy Science Center (BioSC) 52426 Jülich Germany
| | - Oliver H Weiergräber
- Forschungszentrum Jülich, Institute of Biological Information Processing (IBI-7: Structural Biochemistry) 52425 Jülich Germany
| | - Benoit David
- Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG-4: Bioinformatics) 52426 Jülich Germany
| | - Elias L Pfirmann
- Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Institute for Bioorganic Chemistry & Bioeconomy Science Center (BioSC) 52426 Jülich Germany
| | - Beatrix Paschold
- Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Institute for Bioorganic Chemistry & Bioeconomy Science Center (BioSC) 52426 Jülich Germany
| | - Holger Gohlke
- Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG-4: Bioinformatics) 52426 Jülich Germany
- Heinrich Heine University Düsseldorf, Institute for Pharmaceutical and Medicinal Chemistry & Bioeconomy Science Center (BioSC) 40225 Düsseldorf Germany
| | - Jörg Pietruszka
- Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Institute for Bioorganic Chemistry & Bioeconomy Science Center (BioSC) 52426 Jülich Germany
- Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy Science Center (BioSC) 52426 Jülich Germany
| |
Collapse
|
5
|
Zou S, Zhao Z, Yang G, Huang H. Tailored chiral phosphoramidites support highly enantioselective Pd catalysts for asymmetric aminoalkylative amination. Nat Commun 2024; 15:10477. [PMID: 39622821 PMCID: PMC11612159 DOI: 10.1038/s41467-024-54328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
Even though tuning electronic effect of chiral ligands has proven to be a promising method for designing efficient catalysts, the potential to achieve highly selective reactions by this strategy remains largely unexplored. Here, we report a palladium-catalyzed enantioselective ring-closing aminoalkylative amination of aminoenynes enabled by rationally tuning the remote electronic property of 1,1'-binaphthol-derived phosphoramidites. With a tailored 6,6'-CN-substituted 1,1'-binaphthol-derived phosphoramidite as a ligand, a broad range of aromatic amines are compatible with this reaction, allowing the efficient synthesis of a series of enantioenriched exocyclic allenylamines bearing saturated N-heterocycles with up to >99% enantiomeric excess. Remarkably, a one-pot aminoalkylative amination/hydroamination process for the rapid synthesis of chiral spirodiamines promoted by this catalytic system is also established. Detailed mechanistic studies provide solid evidence to support that the remote electronic character of these chiral ligands can efficiently tuning the enantioselectivity by altering the length of the allylic C-Pd bond of the key catalytic intermediate.
Collapse
Affiliation(s)
- Suchen Zou
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Zeyu Zhao
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Guoqing Yang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China.
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, 235000, Huaibei, P. R. China.
| |
Collapse
|
6
|
Wu JY, Huang LL, Fu JL, Li JY, Lin S, Yang S, Huang ZS, Wang H, Li Q. N-Halosuccinimide enables cascade oxidative trifluorination and halogenative cyclization of tryptamine-derived isocyanides. Nat Commun 2024; 15:8917. [PMID: 39414820 PMCID: PMC11484912 DOI: 10.1038/s41467-024-53271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Both the pyrroloindoline core and N-CF3 moiety hold significant importance in medicinal chemistry. However, to date, no instances of constructing N-CF3-containing pyrroloindolines have been reported. Herein, we present a robust and operationally simple approach to assembling such intriguing skeletons from tryptamine-derived isocyanides through a cascade sequence, which includes an oxidative trifluorination and a subsequent halogenative cyclization. Key to the success lies in the development of a facile conversion of isocyanides to N-CF3 moiety with commercially available reagents N-halosuccinimide and Et3N·HF. The protocol features mild reaction conditions, broad functional group tolerance, good to excellent yields, and high diastereoselectivities. In addition, we demonstrate that the halide substituent within the products serves as a versatile functional handle for accessing diverse C3-quaternary-substituted N-CF3-pyrroloindolines.
Collapse
Affiliation(s)
- Jun-Yunzi Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Long-Ling Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Luo Fu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Yi Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuang Lin
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuang Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Honggen Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Qingjiang Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Yu YH, Sun G, Zhao D, Wu YK, Yuan H, Wen X, Liu L, Xu QL. Synthesis of C(3) SCF 3-Substituted Pyrrolidinoindoline by P III/P V Redox Catalysis Using CF 3SO 2Cl as Electrophilic CF 3S Reagent. J Org Chem 2024; 89:11588-11592. [PMID: 39097903 DOI: 10.1021/acs.joc.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
This work reports a method for the catalytic synthesis of C(3) SCF3-substituted pyrrolidinindoline using a small-ring organophosphorus-based catalyst and a hydrosilane reductant, with trifluoromethanesulfonyl chloride as the electrophilic SCF3 reagent. This method can drive the conversion of tryptamine to the C(3) SCF3-substituted pyrrolidine indoline. The readily available, inexpensive trifluoromethanesulfonyl chloride could be activated as an electrophilic SCF3 source by PIII/PV redox catalysis and could efficiently participate in the reaction of tryptamines, thus providing various substituted C(3) SCF3-substituted pyrrolidinoindoline in moderate to excellent yields. This presented strategy features a broad substrate scope, and the structure has value for in-depth research.
Collapse
Affiliation(s)
- Yi-Han Yu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Di Zhao
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Yi-Kai Wu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Nanjing 211198, China
| |
Collapse
|
8
|
Li S, Xu D, Yao H, Tan M, Li X, Liu M, Wang L, Huang N, Wang N. Facile synthesis of 2-vinylindolines via a phosphine-mediated α-umpolung/Wittig olefination/cyclization cascade process. Chem Commun (Camb) 2024; 60:6773-6776. [PMID: 38864654 DOI: 10.1039/d4cc01851f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A novel phosphine-mediated α-umpolung/Wittig olefination/cyclization cascade process between o-aminobenzaldehydes and Morita-Baylis-Hillman (MBH) carbonates has been ingeniously developed. This protocol serves as a practical tool for the facile synthesis of a broad range of 2-vinylindolines in moderate to good yields under mild reaction conditions. The applicability of this method was demonstrated with gram-scale reaction and various transformations of the corresponding product.
Collapse
Affiliation(s)
- Shuhui Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Dan Xu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
| | - Mengting Tan
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Xiaoxuan Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Mingguo Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
| | - Long Wang
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang Hubei 443002, China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
| | - Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China.
- Hubei Three Gorges Laboratory, Yichang Hubei 443007, China
| |
Collapse
|
9
|
Tang J, Zhang Y, Zhou L, Song X, Wei Y, Qi J, Wu J, Song Z, Zhan L. Design, synthesis and biological evaluation of indoline-maleimide conjugates as potential antitumor agents for the treatment of colorectal cancer. Bioorg Med Chem 2024; 108:117786. [PMID: 38843656 DOI: 10.1016/j.bmc.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/17/2024]
Abstract
An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3β pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.
Collapse
Affiliation(s)
- Jielin Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingling Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangrui Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yusi Wei
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ji Qi
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Lingling Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
10
|
Subba P, Sahoo SR, Khajuria C, Singh VK. Enantioselective Aminative Dearomatization of Indoles via Electrophilic 1,6-Addition of p-Quinone Diimides ( p-QDIs). Org Lett 2024; 26:4932-4937. [PMID: 38825803 DOI: 10.1021/acs.orglett.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Herein we report the first use of p-quinone diimide for the aminative dearomatization of 2,3-disubstituted indoles to furnish C3 aza-quaternary chiral indolenines. This approach, which proceeds via an electrophilic 1,6-addition of p-quinone diimide, allows the synthesis of an array of optically active aza-quaternary indolenines with high yields and excellent enantioselectivities. A one-pot approach of the same has also been established to further improve the synthetic accessibility of this protocol.
Collapse
Affiliation(s)
- Parbat Subba
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Sushree Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Chhavi Khajuria
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
11
|
Li F, Yuan Y, Lyu D, Yi Y, Zhang J, Sun T, Gao G. Palladium-Catalyzed Domino Heck/Cross-Coupling Cyclization Reaction: Diastereoselective Synthesis of Furan-Containing Indolines. J Org Chem 2024. [PMID: 38805672 DOI: 10.1021/acs.joc.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Herein, a palladium-catalyzed diastereoselective dearomatization/cross-coupling cyclization reaction between N-arylacyl indoles and (E)-β-chlorovinyl ketones is reported. Through this cyclization/cycloisomerization cascade, a series of furan-containing indolines were obtained in yields up to 95%. The reaction features readily accessible starting materials, benzyl Pd(II)-catalyzed cycloisomerization of (E)-β-chlorovinyl ketones, the sequential formation of three bonds and bis-heterocycles, and excellent diastereoselectivity. More importantly, the carbene-secondary benzyl migratory insertion is proven to be a critical process in the sequential cyclizations.
Collapse
Affiliation(s)
- Furong Li
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Donghao Lyu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yujie Yi
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jingli Zhang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Guanbin Gao
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
12
|
Dou PH, Fu XH, Chen Y, Ge ZZ, Zhou MQ, Wang ZH, You Y, Yang L, Zhang YP, Zhao JQ, Yuan WC. Palladium-Catalyzed Asymmetric Decarboxylation of 5-Vinyloxazolidine-2,4-Diones Triggering the Dearomatization of Electron-Deficient Indoles for the Synthesis of Chiral Highly Functionalized Pyrroloindolines. Org Lett 2024; 26:3310-3315. [PMID: 38587335 DOI: 10.1021/acs.orglett.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A catalyst system consisting of a chiral phosphoramidite ligand and Pd2(dba)3·CHCl3 causes the decarboxylation of 5-vinyloxazolidine-2,4-diones to generate amide-containing aza-π-allylpalladium 1,3-dipole intermediates, which are capable of triggering the dearomatization of 3-nitroindoles for diastereo- and enantioselective [3+2] cycloaddition, leading to the formation of a series of highly functionalized pyrroloindolines containing three contiguous stereogenic centers with excellent results (up to 99% yield, 88:12 dr, and 96% ee).
Collapse
Affiliation(s)
- Pei-Hao Dou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hui Fu
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen-Zhen Ge
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Huang J, Zhou TP, Sun N, Yu H, Yu X, Liao RZ, Yao W, Dai Z, Wu G, Zhong F. Accessing ladder-shape azetidine-fused indoline pentacycles through intermolecular regiodivergent aza-Paternò-Büchi reactions. Nat Commun 2024; 15:1431. [PMID: 38365864 PMCID: PMC10873392 DOI: 10.1038/s41467-024-45687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Small molecules with conformationally rigid, three-dimensional geometry are highly desirable in drug development, toward which a direct, simple-to-complexity synthetic logic is still of considerable challenges. Here, we report intermolecular aza-[2 + 2] photocycloaddition (the aza-Paternò-Büchi reaction) of indole that facilely assembles planar building blocks into ladder-shape azetidine-fused indoline pentacycles with contiguous quaternary carbons, divergent head-to-head/head-to-tail regioselectivity, and absolute exo stereoselectivity. These products exhibit marked three-dimensionality, many of which possess 3D score values distributed in the highest 0.5% region with reference to structures from DrugBank database. Mechanistic studies elucidated the origin of the observed regio- and stereoselectivities, which arise from distortion-controlled C-N coupling scenarios. This study expands the synthetic repertoire of energy transfer catalysis for accessing structurally intriguing architectures with high molecular complexity and underexplored topological chemical space.
Collapse
Affiliation(s)
- Jianjian Huang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Ningning Sun
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Huaibin Yu
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, China
| | - Xixiang Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhifeng Dai
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
14
|
Haase M, David B, Paschold B, Classen T, Schneider P, Pozhydaieva N, Gohlke H, Pietruszka J. Application of the C3-Methyltransferase StspM1 for the Synthesis of the Natural Pyrroloindole Motif. ACS Catal 2024; 14:227-236. [PMID: 38205025 PMCID: PMC10775177 DOI: 10.1021/acscatal.3c04952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Even though pyrroloindoles are widely present in natural products with different kinds of biological activities, their selective synthesis remains challenging with existing tools in organic chemistry, and there is furthermore a demand for stereoselective and mild methods to access this structural motif. Nature uses C3-methyltransferases to form the pyrroloindole framework, starting from the amino acid tryptophan. In the present study, the SAM-dependent methyltransferase StspM1 from Streptomyces sp. HPH0547 is used to build the pyrroloindole structural motif in tryptophan-based diketopiperazines (DKP). The substrate scope of the enzyme regarding different Trp-Trp-DKP isomers was investigated on an experimental and computational level. After further characterization and optimization of the methylation reaction with a design of experiment approach, a preparative scale reaction with the immobilized enzyme including a SAM regeneration system was performed to show the synthetic use of this biocatalytic tool to access the pyrroloindole structural motif.
Collapse
Affiliation(s)
- Mona Haase
- Institute
for Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Benoit David
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics) Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Beatrix Paschold
- Institute
for Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Thomas Classen
- Institute
of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy
Science Center (BioSC), Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Pascal Schneider
- Institute
for Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Nadiia Pozhydaieva
- Institute
for Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum
Jülich, 52426 Jülich, Germany
| | - Holger Gohlke
- Institute
of Bio- and Geosciences (IBG-4: Bioinformatics) Forschungszentrum
Jülich, 52426 Jülich, Germany
- Institute
for Pharmaceutical and Medicinal Chemistry & Bioeconomy Science
Center (BioSC), Heinrich Heine University
Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg Pietruszka
- Institute
for Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum
Jülich, 52426 Jülich, Germany
- Institute
of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy
Science Center (BioSC), Forschungszentrum
Jülich, 52426 Jülich, Germany
| |
Collapse
|
15
|
Zhan G, Zhang F, Yang K, Yang T, Zhou R, Ma X, Wang N, Guo Z. Polycyclic pyrroloindoline-containing natural products with a unique 3-heptyl-2a,4a-diazapentaleno[1,6- ab]indene core isolated from Alstonia scholaris. Org Biomol Chem 2024; 22:296-301. [PMID: 38054263 DOI: 10.1039/d3ob01637d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Alscholarine C (1), featuring an unprecedented pyrroloindoline-containing natural product (PiNP) with a 6/5/5/5 tetracyclic carbon skeleton, and four known PiNPs (2-5), namely demethylalstoscholarinine E (2), Nb-demethylechitamine (3), winphylline A (4), and echitamine (5), were isolated from Alstonia scholaris. Compound 1 was characterized by a hexahydropyrrolo[2,3-b] indole (HPI) core fused to a unique 4-heptylimidazolidine motif, forming an unparalleled 3-heptyl-2a,4a-diazapentaleno[1,6-ab]indene ring system. Their structures were established by spectroscopic analysis, quantum-chemical calculated 13C NMR data with DP4+ probability analyses, and ECD calculations and comparison. A plausible biosynthetic pathway of 1 was proposed. Compound 1 exhibited potential anti-inflammatory activity against LPS-stimulated NO production in RAW264.7 cells.
Collapse
Affiliation(s)
- Guanqun Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Fuxin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Kailing Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Tao Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Ruixi Zhou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Xueqing Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Nan Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Zengjun Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
16
|
Gao H, Miao Y, Sun W, Zhao R, Xiao X, Hua Y, Jia S, Wang M, Mei G. Diversity-Oriented Catalytic Asymmetric Dearomatization of Indoles with o-Quinone Diimides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305101. [PMID: 37870177 PMCID: PMC10724437 DOI: 10.1002/advs.202305101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Herein, the first diversity-oriented catalytic asymmetric dearomatization of indoles with o-quinone diimides (o-QDIs) is reported. The catalytic asymmetric dearomatization (CADA) of indoles is one of the research focuses in terms of the structural and biological importance of dearomatized indole derivatives. Although great achievements have been made in target-oriented CADA reactions, diversity-oriented CADA reactions are regarded as more challenging and remain elusive due to the lack of synthons featuring multiple reaction sites and the difficulty in precise control of chemo-, regio-, and enantio-selectivity. In this work, o-QDIs are employed as a versatile building block, enabling the chemo-divergent dearomative arylation and [4 + 2] cycloaddition reactions of indoles. Under the catalysis of chiral phosphoric acid and mild conditions, various indolenines, furoindolines/pyrroloindolines, and six-membered-ring fused indolines are collectively prepared in good yields with excellent enantioselectivities. This diversity-oriented synthesis protocol enriches the o-quinone chemistry and offers new opportunities for CADA reactions.
Collapse
Affiliation(s)
- Hao‐Jie Gao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Yu‐Hang Miao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Wen‐Na Sun
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Rui Zhao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of TechnologyHangzhou310014China
| | - Yuan‐Zhao Hua
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Shi‐Kun Jia
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Min‐Can Wang
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Guang‐Jian Mei
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
17
|
Shu H, Mo JN, Liu WD, Zhao J. Synthesis of Pyrroloindolines via N-Heterocyclic Carbene Catalyzed Dearomative Amidoacylation of Indole Derivatives. Org Lett 2023. [PMID: 37996081 DOI: 10.1021/acs.orglett.3c03588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Pyrroloindoline is a privileged heterocyclic motif that is widely present in many natural products and pharmaceutical compounds. Herein, we report an amidyl radical-mediated dearomatization for synthesizing a series of pyrroloindolines via N-heterocyclic carbene catalysis. In this organocatalytic process, the Breslow enolate served as both a single electron donor and an acyl radical equivalent to assemble C3a-acyl pyrroloindolines with a broad substrate scope. Sequential reduction of the indole derivatives provided the analogues of (±)-desoxyeseroline, which exhibited potential anticancer activity.
Collapse
Affiliation(s)
- Hanyu Shu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Ren H, Wang RA, Shi J, Song JR, Wu W, Chi Q, Zhang N. Electrochemical bromocyclization enables 3,5-diversification of heterocyclic indolines. Org Biomol Chem 2023; 21:7290-7294. [PMID: 37650516 DOI: 10.1039/d3ob00985h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Electrophilic bromocyclization reactions are widely used as key steps in the synthesis of diverse functionalized tetrahydrofuroindolines and hexahydropyrroloindolines. However, the direct dibromination variants of these reactions for the synthesis of 3,5-dibromoindolines remain undeveloped. Here, we report a protonic-acid-promoted electrooxidative protocol for the dearomative C3,C5-dibromocyclizations of tryptophol and tryptamine derivatives. This electrosynthetic approach, which enables direct selective construction of heterocyclic 3a,5a-dibromoindolines with inexpensive, non-hazardous NaBr as both the electrolyte and Br source, provides a convenient, practical method for the late-stage 3,5-diversification of heterocyclic indolines.
Collapse
Affiliation(s)
- Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Rui-An Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Ni Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| |
Collapse
|
19
|
Hu YY, Xu XQ, Deng WC, Liang RX, Jia YX. Nickel-Catalyzed Enantioselective Dearomative Heck-Reductive Allylic Defluorination Reaction of Indoles. Org Lett 2023; 25:6122-6127. [PMID: 37578397 DOI: 10.1021/acs.orglett.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we describe a nickel-catalyzed asymmetric dearomative aryl-difluoroallylation reaction of indoles with α-trifluoromethyl alkenes as an electrophilic coupling partner. The reaction proceeds via a cascade sequence involving dearomative Heck cyclization and reductive allylic defluorination. A series of gem-difluoroallyl substituted indolines are obtained in moderate to good yields (36-77% yield) with excellent enantioselectivity (up to 99% ee). The reaction features broad functional group tolerance, scaled-up synthesis, and late-stage diversification.
Collapse
Affiliation(s)
- Yuan-Yuan Hu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Xiao-Qiu Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Wei-Chao Deng
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
20
|
Mo NN, Miao YH, Xiao X, Hua YZ, Wang MC, Huang L, Mei GJ. Catalytic asymmetric de novo construction of 4-pyrrolin-2-ones via intermolecular formal [3+2] cycloaddition of azoalkenes with azlactones. Chem Commun (Camb) 2023; 59:5902-5905. [PMID: 37097750 DOI: 10.1039/d3cc01194a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The chiral phosphoric acid-catalyzed asymmetric intermolecular formal [3+2] cycloaddition of azoalkenes with azlactones has been established. This convergent protocol leads to a facile and enantioselective de novo construction of a wide range of fully substituted 4-pyrrolin-2-ones bearing a fully substituted carbon atom in good yields and with excellent enantioselectivities (26 examples, 72-95% yields and 87-99% ee).
Collapse
Affiliation(s)
- Nan-Nan Mo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yu-Hang Miao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Lihua Huang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
21
|
Adam S, Zheng D, Klein A, Volz C, Mullen W, Shirran SL, Smith BO, Kalinina OV, Müller R, Koehnke J. Unusual peptide-binding proteins guide pyrroloindoline alkaloid formation in crocagin biosynthesis. Nat Chem 2023; 15:560-568. [PMID: 36894702 PMCID: PMC10070186 DOI: 10.1038/s41557-023-01153-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2023] [Indexed: 03/11/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptide natural products have provided many highly unusual scaffolds. This includes the intriguing alkaloids crocagins, which possess a tetracyclic core structure and whose biosynthesis has remained enigmatic. Here we use in vitro experiments to demonstrate that three proteins, CgnB, CgnC and CgnE, are sufficient for the production of the hallmark tetracyclic crocagin core from the precursor peptide CgnA. The crystal structures of the homologues CgnB and CgnE reveal them to be the founding members of a peptide-binding protein family and allow us to rationalize their distinct functions. We further show that the hydrolase CgnD liberates the crocagin core scaffold, which is subsequently N-methylated by CgnL. These insights allow us to propose a biosynthetic scheme for crocagins. Bioinformatic analyses based on these data led to the discovery of related biosynthetic pathways that may provide access to a structurally diverse family of peptide-derived pyrroloindoline alkaloids.
Collapse
Affiliation(s)
- Sebastian Adam
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Dazhong Zheng
- School of Chemistry, University of Glasgow, Glasgow, UK
| | - Andreas Klein
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Carsten Volz
- Department of Microbial Natural Products, HIPS; HZI; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sally L Shirran
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Brian O Smith
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Olga V Kalinina
- Drug Bioinformatics Group, HIPS, HZI, Saarland University, Saarbrücken, Germany
- Medical Faculty, Saarland University, Homburg, Germany
- Center for Bioinformatics, Saarbrücken, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, HIPS; HZI; Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Hannover-Braunschweig Site, German Centre for Infection Research (DZIF), Hanover, Germany
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany.
- School of Chemistry, University of Glasgow, Glasgow, UK.
| |
Collapse
|
22
|
Bai L, Fu B, Jiang X. A one-step gram-scale protocol for stereoselective domino dimerization to asperazine A analogs. STAR Protoc 2023; 4:102114. [PMID: 36861828 PMCID: PMC9985029 DOI: 10.1016/j.xpro.2023.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 03/03/2023] Open
Abstract
Here, we present an efficient protocol for stereoselective 4N-based domino dimerization in one single step, establishing a 22-membered library of asperazine A analogs. We describe steps for performing a gram-scale 2N-monomer to access the unsymmetrical 4N-dimer. We detail the synthesis of the desired dimer 3a as a yellow solid in 78% yield. This process demonstrates the 2-(iodomethyl)cyclopropane-1,1-dicarboxylate to be an iodine cation source. The protocol is limited to unprotected aniline of 2N-monomer. For complete details on the use and execution of this protocol, please refer to Bai et al. (2022).1.
Collapse
Affiliation(s)
- Leiyang Bai
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Institute of Eco-Chongming, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Bei Fu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Institute of Eco-Chongming, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Institute of Eco-Chongming, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China; State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China; State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
23
|
Yang FY, Han TJ, Jia SK, Wang MC, Mei GJ. Catalytic [2,3]-sigmatropic rearrangement of sulfonium ylides derived from azoalkenes: non-carbenoid Doyle-Kirmse reaction. Chem Commun (Camb) 2023; 59:3107-3110. [PMID: 36808428 DOI: 10.1039/d3cc00160a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The Sc(III)-catalyzed [2,3]-sigmatropic rearrangement of sulfonium ylides derived from azoalkenes has been established. Owing to the absence of a carbenoid intermediate, this protocol represents the first non-carbenoid variant of the Doyle-Kirmse reaction. Under mild conditions, a variety of tertiary thioethers have been readily prepared in good to excellent yields.
Collapse
Affiliation(s)
- Fu-Yuan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Tian-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
24
|
Pang Q, Zuo WF, Zhang Y, Li X, Han B. Recent Advances on Direct Functionalization of Indoles in Aqueous Media. CHEM REC 2023; 23:e202200289. [PMID: 36722727 DOI: 10.1002/tcr.202200289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Indexed: 02/02/2023]
Abstract
Indoles and their derivatives have dominated a significant proportion of nitrogen-containing heterocyclic compounds and play an essential role in synthetic and medicinal chemistry, pesticides, and advanced materials. Compared with conventional synthetic strategies, direct functionalization of indoles provides straightforward access to construct diverse indole scaffolds. As we enter an era emphasizing green and sustainable chemistry, utilizing environment-friendly solvents represented by water demonstrates great potential in synthesizing valuable indole derivatives. This review aims to depict the critical aspects of aqueous-mediated indoles functionalization over the past decade and discusses the future challenges and prospects in this fast-growing field. For the convenience of readers, this review is classified into three parts according to the bonding modes (C-C, C-N, and C-S bonds), which focus on the diversity of indole derivatives, the prominent role of water in the chemical process, and the types of catalyst systems and mechanisms. We hope this review can promote the sustainable development of the direct functionalization of indoles and their derivatives and the discovery of novel and practical organic methods in aqueous phase.
Collapse
Affiliation(s)
- Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
25
|
Shen L, Zheng Y, Lin Z, Qin T, Huang Z, Zi W. Copper-Catalyzed Enantioselective C1,N-Dipolar (3+2) Cycloadditions of 2-Aminoallyl Cations with Indoles. Angew Chem Int Ed Engl 2023; 62:e202217051. [PMID: 36562702 DOI: 10.1002/anie.202217051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
2-Aminoallyl cations are versatile 1,3-dipoles that could potentially be used for diverse (3+n) cycloaddition reactions. Despite some preliminary studies, the asymmetric catalytic transformation of these species is still underdeveloped. We herein report a binuclear copper-catalyzed generation of 2-aminoallyl cations from ethynyl methylene cyclic carbamates and their enantioselective (3+2) cycloaddition reaction with indoles to construct chiral pyrroloindolines. This transformation features a novel C1,N-dipolar reactivity for 2-aminoallyl cations.
Collapse
Affiliation(s)
- Lulu Shen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Zheng
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, University of Hong Kong, Hong Kong, P. R. China
| | - Zitong Lin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Tianzhu Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, University of Hong Kong, Hong Kong, P. R. China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
26
|
Han XQ, Liu JY, Lu JB, Liang RX, Jia YX. Dearomatizing [2+2+1] Spiroannulation of Indoles with Alkynes. Org Lett 2023; 25:261-266. [PMID: 36546773 DOI: 10.1021/acs.orglett.2c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A palladium-catalyzed dearomatizing [2+2+1] spiroannulation of indoles with two molecular internal alkynes is developed in the presence of Cu(OAc)2/O2 as the oxidant, in which a domino sequence including C-H activation of indole followed by consecutive Heck reactions is involved. A range of 3,3'-spiroindolines bearing tetrasubstituted cyclopentadiene moieties and exocyclic C═C bonds at C2 are obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Xiao-Qing Han
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jing-Yuan Liu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jin-Bo Lu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
| |
Collapse
|
27
|
Asymmetric catalytic alkylation of vinyl azides with 3-bromo oxindoles: water-assisted chemo- and enantiocontrol. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Sindhe H, Saiyed N, Kamble A, Mounika Reddy M, Singh A, Sharma S. Catalytic and Chemodivergent Synthesis of 1-Substituted 9 H-Pyrrolo[1,2- a]indoles via Annulation of β-CF 3 Enones with 3-Substituted Indoles. J Org Chem 2023; 88:230-244. [PMID: 36503232 DOI: 10.1021/acs.joc.2c02240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemodivergent reactions are more advantageous in organic synthesis that yield diversely functionalized scaffolds from common starting materials. Herein, we report an efficient metal-free chemodivergent protocol for the synthesis of 1-substituted 9H-pyrrolo[1,2-a]indole derivatives in the presence of catalytic amounts of Lewis acid/Brønsted acid conditions using 3-substituted indoles and β-trifluoromethyl-α,β-unsaturated ketones. Fine-tuning of the catalyst and solvent system in the reaction conditions deliver the trifluoromethyl, trifluoroethylcarboxylate, or carboxylic acid substituents on the C1-position of 9H-pyrrolo[1,2-a]indole derivatives in situ. It is postulated that the solvent and LA/BA catalyst interaction was found to be crucial for the catalytic C-F activation in these transformations.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Nehanaz Saiyed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Malladi Mounika Reddy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Amardeep Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
29
|
Luo ML, Hou Q, Liu SJ, Zhao Q, Qin R, Peng C, Han B, Zhan G. One-Step Synthesis of Hydropyrrolo[3,2- b]indoles via Cascade Reactions of Oxindole-Derived Nitrones with Allenoates. Org Lett 2022; 24:8493-8497. [DOI: 10.1021/acs.orglett.2c03349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qiumeng Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
30
|
Total synthesis of (+)-asperazine A: A stereoselective domino dimerization. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Wang BC, Fan T, Xiong FY, Chen P, Fang KX, Tan Y, Lu LQ, Xiao WJ. De Novo Construction of Chiral Aminoindolines by Cu-Catalyzed Asymmetric Cyclization and Subsequent Discovery of an Unexpected Sulfonyl Migration. J Am Chem Soc 2022; 144:19932-19941. [PMID: 36270010 DOI: 10.1021/jacs.2c08090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Searching for efficient strategies to access structurally novel aminoindolines is of great significance for drug discovery. However, catalytic asymmetric de novo construction of aminoindoline scaffolds with functionality primed for diversification still remains elusive. Here, we report a Cu-catalyzed asymmetric cyclization of ethynyl benzoxazinones with amines, producing chiral 3-aminoindolines in good yield and with high enantioselectivity (up to 97% yield and 98:2 er). Moreover, a radical-mediated sulfonyl migration of these products was unexpectedly found, further affording new chiral 3-aminoindolines bearing alkenyl sulfonyl groups with retained enantiopurity (up to 84% yield and 98:2 er). Bioactivity evaluations indicate that these 3-aminoindolines show notable antitumor activities and chirality is proven to have a significant impact on their antitumor activity.
Collapse
Affiliation(s)
- Bao-Cheng Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Fen-Ya Xiong
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Peng Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Kai-Xin Fang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
32
|
Zhang H, He J, Xu W, Yang L, Zhang X, Wang H, Lang M, Wang J, Peng S. Unexpected Copper-Catalyzed Cascade Reaction of 1,6-Enynes with Sulfoxonium Ylides. Org Lett 2022; 24:7095-7100. [PMID: 36154184 DOI: 10.1021/acs.orglett.2c02620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An unprecedented copper-catalyzed cascade reaction of 1,6-enynes with sulfoxonium ylides is reported, providing a series of structurally intriguing 2,3-disubstituted indolines bearing a conjugated dienone functionality at the 3-position in moderate to excellent yields with good chemo-, regio-, and diastereoselectivities under mild reaction conditions. Importantly, sulfoxonium-ylide-derived copper-carbene herein exhibits quite different reactivity from that of diazo copper-carbene. A rational mechanism, an initial ammonium ylide rather than allene formation, is proposed.
Collapse
Affiliation(s)
- Hong Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Jieyin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Wendi Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Liangliang Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Xue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Haiyang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Jian Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China.,School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| |
Collapse
|
33
|
Han T, Zhang Z, Wang M, Xu L, Mei G. The Rational Design and Atroposelective Synthesis of Axially Chiral C2‐Arylpyrrole‐Derived Amino Alcohols. Angew Chem Int Ed Engl 2022; 61:e202207517. [DOI: 10.1002/anie.202207517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Tian‐Jiao Han
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zheng‐Xu Zhang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 Shandong China
| | - Min‐Can Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Li‐Ping Xu
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 Shandong China
| | - Guang‐Jian Mei
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
34
|
Gao HJ, Miao YH, Jia SK, Li N, Xu LP, Wang W, Wang MC, Mei GJ. Azo group-enabled metal- and oxidant-free alkenyl C–H thiolation: Access to stereodefined tetrasubstituted acyclic olefins. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Ye AH, Song XF, Chen ZM. Electrophilic Thiocyanation of Tryptamine Derivatives: Divergent Synthesis of SCN-Containing Indole Compounds. Chem Asian J 2022; 17:e202200802. [PMID: 36039929 DOI: 10.1002/asia.202200802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Indexed: 11/07/2022]
Abstract
A tandem dearomative electrophilic thiocyanation/cyclization/acylation of indoles was developed for the first time, which is enabled by acyl chloride. A variety of 3-SCN pyrroloindolines were obtained with moderate to excellent yields. Interestingly, replacement of acyl chloride with methanesulfonic acid, 2-SCN tryptamines were obtained using the same starting substrates and reagents. Furthermore, catalytic enantioselective manner of thiocyanation/cyclization/acylation reaction was also studied. An enantiomer self-disproportionation effect of 3-SCN pyrroloindolines was discovered. A series of chiral 3-SCN pyrroloindolines were obtained with high enantioselectivities.
Collapse
Affiliation(s)
- Ai-Hui Ye
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Xu-Feng Song
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Zhi-Min Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan RD. Minhang District, 200240, Shanghai, CHINA
| |
Collapse
|
36
|
Liu B, Duan XY, Li J, Wu Y, Li Y, Qi J. N-Heterocyclic Carbene-Catalyzed [3 + 2] Annulation of 3,3'-Bisoxindoles with α-Bromoenals: Enantioselective Construction of Contiguous Quaternary Stereocenters. Org Lett 2022; 24:5929-5934. [PMID: 35947030 DOI: 10.1021/acs.orglett.2c02180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An NHC-catalyzed enantio- and diastereoselective [3 + 2] annulation of α-bromoenals with bisoxindoles is developed, affording efficient access to various spirocyclic bisoxindole alkaloids. This protocol tolerates a broad substrates scope, with various spirocyclic bisoxindoles obtained in generally excellent enantioselectivities. More importantly, two contiguous sterically congested all-carbon quaternary stereocenters are successfully created during this process.
Collapse
Affiliation(s)
- Binghao Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Xiao-Yong Duan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| | - Jiahan Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Yatong Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Yanting Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Jing Qi
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|
37
|
Recent Advances in the Synthesis of Indolines via Dearomative Annulation of
N
‐acylindoles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Sun C, Tian W, Lin Z, Qu X. Biosynthesis of pyrroloindoline-containing natural products. Nat Prod Rep 2022; 39:1721-1765. [PMID: 35762180 DOI: 10.1039/d2np00030j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2022Pyrroloindoline is a privileged tricyclic indoline motif widely present in many biologically active and medicinally valuable natural products. Thus, understanding the biosynthesis of this molecule is critical for developing convenient synthetic routes, which is highly challenging for its chemical synthesis due to the presence of rich chiral centers in this molecule, especially the fully substituted chiral carbon center at the C3-position of its rigid tricyclic structure. In recent years, progress has been made in elucidating the biosynthetic pathways and enzymatic mechanisms of pyrroloindoline-containing natural products (PiNPs). This article reviews the main advances in the past few decades based on the different substitutions on the C3 position of PiNPs, especially the various key enzymatic mechanisms involved in the biosynthesis of different types of PiNPs.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
39
|
Han TJ, Zhang ZX, Wang MC, Xu LP, Mei GJ. The Rational Design and Atroposelective Synthesis of Axially Chiral C2‐Arylpyrrole‐Derived Amino Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Zheng-Xu Zhang
- Shandong University of Technology College of Chemistry CHINA
| | | | - Li-Ping Xu
- Shandong University of Technology College of Chemistry CHINA
| | - Guang-Jian Mei
- Zhengzhou University Chemistry Zhengzhou 450001 450001 Zhengzhou CHINA
| |
Collapse
|
40
|
Miao YH, Hua YZ, Gao HJ, Mo NN, Wang MC, Mei GJ. Catalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of 1,3-diazadienes with 3-vinylindoles. Chem Commun (Camb) 2022; 58:7515-7518. [PMID: 35687078 DOI: 10.1039/d2cc02458f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A facile chiral phosphoric-acid catalyzed asymmetric inverse-electron-demand aza-Diels-Alder reaction of 1,3-diazadienes with 3-vinylindoles was established. By using this mild and practical protocol, a broad range of benzothiazolopyrimidines with three contiguous stereogenic centers were prepared in good yields and excellent diastereo- and enantio-selectivities (43 examples, up to 83% yield, >99% ee and all >20 : 1 dr). A plausible concerted reaction pathway enabled by the dual hydrogen-bonding effect was proposed to account for the observed excellent enantioselectivity and specific trans-trans diastereoselectivity.
Collapse
Affiliation(s)
- Yu-Hang Miao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Hao-Jie Gao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Nan-Nan Mo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
41
|
Deng R, Han TJ, Gao X, Yang YF, Mei GJ. Further developments of β,γ-unsaturated α-ketoesters as versatile synthons in asymmetric catalysis. iScience 2022; 25:103913. [PMID: 35243262 PMCID: PMC8881726 DOI: 10.1016/j.isci.2022.103913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
42
|
Xu ZH, Jia SK, Chang ZR, Hua YZ, Wang MC, Mei GJ. Facile access to saccharin‐fused 1,4‐dihydropyridines via [3 + 3] annulation reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-Hua Xu
- Zhengzhou University College of Chemistry CHINA
| | - Shi-Kun Jia
- Zhengzhou University College of Chemistry CHINA
| | | | | | | | - Guang-Jian Mei
- Zhengzhou University Chemistry Zhengzhou 450001 450001 Zhengzhou CHINA
| |
Collapse
|
43
|
Cheng S, Luo Y, Yu T, Li J, Gan C, Luo S, Zhu Q. Palladium-Catalyzed Four-Component Cascade Imidoyl-Carbamoylation of Unactivated Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Yu Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, People’s Republic of China
| |
Collapse
|
44
|
Maity A, Munda M, Niyogi S, Kumar N, Bisai A. Total syntheses of Hexahydropyrrolo[2,3-b]indole Alkaloids, (+)-pseudophrynamine 270 and (+)-pseudophrynamine 272A. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Han TJ, Wang MC, Mei GJ. 2-Indolymethanols as 4-atom-synthons in oxa-Michael reaction cascade: access to tetracyclic indoles. Chem Commun (Camb) 2021; 57:8921-8924. [PMID: 34387291 DOI: 10.1039/d1cc03653j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first Brønsted acid-catalyzed oxa-Michael reaction cascade of 2-indolylmethanols with trione alkenes was accomplished. By using this practical approach, a variety of tetracyclic indoles were readily created in an ordered sequence with excellent regio- and diastereoselectivity. 2-Indolylmethanols commendably served as four-atom synthons, as opposed to the common three-atom synthons in the previous literature reports. The regioselectivity issue was well handled by the employment of a strong Brønsted acid catalyst. In addition, its dual role in activation of substrates via hydrogen-bonding interaction and acceleration of subsequent intramolecular cyclization and dehydration was proposed to account for the high reaction efficiency.
Collapse
Affiliation(s)
- Tian-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|