1
|
Wang Z, Liu X, Chen C, Liu M, Yang C. A porous La 0.5Sr 0.5FeO 3-δ anode decorated with V 2O 5 nanoparticles enables high efficiency electrochemical oxidative dehydrogenation of ethane to ethylene. J Colloid Interface Sci 2025; 686:807-817. [PMID: 39922170 DOI: 10.1016/j.jcis.2025.01.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
While oxidative dehydrogenation of ethane (ODE) has garnered significant attention due to its value-added ethylene product, the ethylene selectivity still requires further improvement for practical applications. Here, we report our findings on the simultaneous electrochemical ODE at the anode and CO2 electrolysis at the cathode of a solid oxide electrolysis cell (SOEC) using La0.5Sr0.5FeO3-δ (LSF) electrodes decorated with V2O5 nanoparticles. When properly optimized, the LSF-V2O5 electrode exhibits remarkable electrocatalytic activity for both ODE and CO2 reduction, achieving an ethylene selectivity of 92.9 %, the highest value reported in the literature. The excellent electrocatalytic activity of the LSF-V2O5 electrode is attributed mainly to the abundant oxygen vacancies generated at the LSF/V2O5 interface of the anode, creating numerous active sites for ethane adsorption/activation and ODE reaction. Moreover, a large number of oxygen vacancies generated at the LSF/V2O5 interface of the cathode facilitate CO2 adsorption and electrolysis, producing O2- ions that move through the electrolyte to the anode, where they serve as the oxidant for the ODE reaction. The coordination of the two reactions greatly enhances the kinetics of ethane adsorption and dehydrogenation, eventually leading to high ethylene selectivity.
Collapse
Affiliation(s)
- Ziming Wang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006 China
| | - Xiaoyu Liu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006 China
| | - Changdong Chen
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006 China.
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
| | - Chenghao Yang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006 China.
| |
Collapse
|
2
|
Fan L, Luo W, Fan Q, Hu Q, Jing Y, Chiu TW, Lund PD. Status and outlook of solid electrolyte membrane reactors for energy, chemical, and environmental applications. Chem Sci 2025; 16:6620-6687. [PMID: 40160366 PMCID: PMC11951168 DOI: 10.1039/d4sc08300h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Solid electrolyte membrane reactors (SEMRs) can be operated at high temperatures with distinct reaction kinetics, or at lower temperatures (300-500 °C) for industrially relevant energy applications (such as solid oxide fuel/electrolysis cells, direct carbon fuel cells, and metal-air batteries), chemical (such as alkane dehydrogenation, C-C coupling, and NH3 synthesis), environmental (De-NO x , CO2 utilization, and separation), as well as their combined (one-step coupled CO2/H2O co-electrolysis and methanation reaction, power and chemical cogeneration) applications. SEMRs can efficiently integrate electrical, chemical, and thermal energy sectors, thereby circumventing thermodynamic constraints and production separation issues. They offer a promising way to achieve carbon neutrality and improve chemical manufacturing processes. This review thoroughly examines SEMRs utilizing various ionic conductors, namely O2-, H+, and hybrid types, with operations in different reactor/cell architectures (such as panel, tubular, single chamber, and porous electrolytes). The reactors operate in various modes including pumping, extraction, reversible, or electrical promoting modes, providing multiple functionalities. The discussion extends to examining critical materials for solid-state cells and catalysts essential for specific technologically important reactions, focusing on electrochemical performance, conversion efficiency, and selectivity. The review also serves as a first attempt to address the potential of process-intensified SEMRs through the integration of photo/solar, thermoelectric, and plasma energy and explores the unique phenomenon of electrochemical promotion of catalysis (EPOC) in membrane reactors. The ultimate goal is to offer insight into ongoing critical scientific and technical challenges like durability and operational cost hindering the widespread industrial implementation of SEMRs while exploring the opportunities in this rapidly growing research domain. Although still in an early stage with limited demonstrations and applications, advances in materials, catalysis science, solid-state ionics, and reactor design, as well as process intensification and/or system integration will fill the gaps in current high temperature operation of SEMRs and industrially relevant applications like sustainable clean chemical production, efficient energy conversion/storage, as well as environmental enhancement.
Collapse
Affiliation(s)
- Liangdong Fan
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, Department of New Energy Science and Technology, College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 Guangdong China
| | - Wanying Luo
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, Department of New Energy Science and Technology, College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 Guangdong China
| | - Qixun Fan
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, Department of New Energy Science and Technology, College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 Guangdong China
| | - Qicheng Hu
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, Department of New Energy Science and Technology, College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 Guangdong China
| | - Yifu Jing
- Department of Materials Science, Shenzhen MSU-BIT University Shenzhen 517182 Guangdong China
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology Taipei Taiwan
| | - Peter D Lund
- New Energy Technologies Group, Department of Applied Physics, Aalto University School of Science FI-00076 Aalto Finland
| |
Collapse
|
3
|
Zhu Z, Li Y, Wu X, Xu J, Sun X, Liu Q. Unraveling the Kinetics and Mechanism of Ethane Chlorination in the Gas Phase. Molecules 2025; 30:1756. [PMID: 40333805 PMCID: PMC12029759 DOI: 10.3390/molecules30081756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
The selective chlorination of ethane to 1,2-dichloroethane offers a promising route for upgrading ethane, yet its efficiency remains constrained by limited mechanistic insights into gas-phase chlorine-radical-mediated pathways, which govern target product selectivity and competing dehydrochlorination side reactions. This work systematically decouples the kinetics of ethane chlorination and chloroethane functionalization under varying Cl2 concentrations, revealing that chlorine radicals govern product distribution through thermodynamically favored pathways. This results in an interesting phenomenon whereby the product ratio between 1,1-C2H4Cl2 and 1,2-C2H4Cl2 maintains a constant 2:1 stoichiometry regardless of Cl2 concentration variation. A critical observation is that the rate of all chlorination steps remains independent of alkane concentrations, highlighting the dominant role of chlorine radicals in rate-determining steps. Furthermore, ethylene byproducts are demonstrated to originate from the dechlorination of chlorine-radical-induced 2-chloroethyl radicals derived from chloroethane, rather than the direct dehydrochlorination of chloroethane itself. These insights into the dual role of chlorine radicals-mediating both the chlorination and dehydrochlorination pathways-establish a foundational framework for integrating gas-phase radical chemistry with catalytic engineering strategies to suppress undesired side reactions and enable scalable, selective ethane chlorination.
Collapse
Affiliation(s)
- Zihan Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jinming Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaohui Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Qinggang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Vogt‐Lowell K, Chacko D, Yang K, Carsten J, Liu J, Housley M, Li F. Molten-Salt-Mediated Chemical Looping Oxidative Dehydrogenation of Ethane with In-Situ Carbon Capture and Utilization. CHEMSUSCHEM 2025; 18:e202401473. [PMID: 39462199 PMCID: PMC11912109 DOI: 10.1002/cssc.202401473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
The molten-salt-mediated oxidative dehydrogenation (MM-ODH) of ethane (C2H6) via a chemical looping scheme represents an effective carbon capture and utilization (CCU) method for the valorization of ethane-rich shale gas and concurrent mitigation of carbon dioxide (CO2) emissions. Here, stepwise experimentation with Li2CO3-Na2CO3-K2CO3 (LNK) ternary salts (i) assessed how each component of the LNK mixture impacted ethane MM-ODH performance and (ii) explored physicochemical and thermodynamic mechanisms behind melt-induced changes to ethylene (C2H4) and carbon monoxide (CO) yields. Of fifteen screened LNK compositions, nine exhibited ethylene yields greater than 50 % at 800 °C while maintaining C2H4 selectivities of 85 % or higher. LNK salts rich in Li2CO3 content yielded more ethylene and CO on average than their counterparts, and net CO2 capture per cycle reached a maximum of ~75 %. Extended MM-ODH cycling also demonstrated long-term stability of a high-performing LNK medium. Density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations suggested that the molten salt does not directly activate C2H6. Meanwhile, an empirical model informed by experimental data and reaction thermodynamics adequately predicted overall MM-ODH performance from LNK composition and provided insights into the system's primary drivers.
Collapse
Affiliation(s)
- Kyle Vogt‐Lowell
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| | - Dennis Chacko
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| | - Kunran Yang
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| | - Jace Carsten
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| | - Junchen Liu
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| | - Matthew Housley
- School of EngineeringNewcastle UniversityMerz CourtNewcastle upon TyneNE1 7RUUnited Kingdom
| | - Fanxing Li
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleigh, North Carolina27695–7905USA
| |
Collapse
|
5
|
Zhang X, Shi J, Wu X, Lv F, Wang X, Chen S, Yu Y, Liu P, Xie C. Selective Photocatalytic Oxidative Ethane Dehydrogenation on AuPd Nanoparticle-Decorated TiO 2. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39988795 DOI: 10.1021/acsami.5c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Photocatalytic oxidative dehydrogenation of ethane offers a promising approach for producing ethylene under mild conditions. However, achieving high ethylene yields and selectivity is challenging due to the high C-H bond activation barrier in ethane and the tendency for overoxidation to CO2. In this study, we demonstrate that TiO2 with highly dispersed AuPd nanoparticles serves as an efficient and selective photocatalyst for the dehydrogenation of ethane with O2 in a flow reactor. The optimized Au0.33Pd0.67/TiO2 achieves up to 20.3 mmol g-1 h-1 of ethylene with 91.5% selectivity, resulting in a 5.9% apparent quantum efficiency at 365 nm. Detailed characterizations reveal that the Au0.33Pd0.67 cocatalyst plays a crucial role in facilitating photocarrier separation and regulating the formation of active oxygen species. Au0.33Pd0.67 effectively activates lattice oxygen of TiO2, which serves as the localized oxidant to promote ethane dissociation through a photoassisted Mars-van Krevelen mechanism. Additionally, Au0.33Pd0.67/TiO2 facilitates dioxygen reduction and ensures rapid oxygen replenishment in the TiO2 lattice, thereby achieving a high yield of ethylene formation. This work provides valuable insights for designing composite photocatalysts for efficient and selective ethane oxidative dehydrogenation.
Collapse
Affiliation(s)
- Xindan Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiale Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyan Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Fanxun Lv
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuan Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shaohua Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Pengxin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Chenlu Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Ye H, Xing W, Zhao F, Wang J, Yang C, Hou Y, Zhang J, Yu JC, Wang X. Sabatier Optimal of Mn-N 4 Single Atom Catalysts for Selective Oxidative Desulfurization. Angew Chem Int Ed Engl 2025; 64:e202419630. [PMID: 39632738 DOI: 10.1002/anie.202419630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Understanding the relationship of competitive adsorption between reactants is the prerequisite for high activity and selectivity in heterogeneous catalysis, especially the difference between the adsorption energies (Eads) of two reactive intermediates in Langmuir-Hinshelwood (L-H) models. Using oxidative dehydrogenation of hydrogen sulfide (H2S-ODH) as a probe, we develop various metal single atoms on nitrogen-doped carbon (M-NDC) catalysts for controlling Eads-H2S, Eads-O2 and investigating the difference in activity and selectivity. Combining theoretical and experimental results, a Sabatier relationship between the catalytic performance and Eads-O2/Eads-H2S emerges. Mn-NDC as the optimal catalyst shows excellent H2S conversion (>90 %) and sulfur selectivity (>90 %) in a wide range of O2 concentrations over 100 h. Such a high-efficiency performance is attributed to appropriate Eads-H2S and Eads-O2 on Mn-N4 sites, boosting redox cycle between Mn2+ and Mn3+, as well as preferential formation of sulfur. This work provides a fundamental guidance for designing Sabatier optimal catalysts in L-H models.
Collapse
Affiliation(s)
- Hanfeng Ye
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Fei Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jiali Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jinshui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
7
|
Guo X, Zhang X, Wu G, Gong J, Jin F. Discrimination of the Synergistic Effect of Different Zinc Active Sites with a Brønsted Acid in Zeolite for Dehydrogenation Cracking of n-Octane and Ethane Dehydroaromatization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27470-27480. [PMID: 39688097 DOI: 10.1021/acs.langmuir.4c03769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The synergetic effect of different zinc active sites with a Brønsted acid site (BAS) in Zn-MCM-22 for n-octane dehydrogenation cracking and ethane dehydroaromatization was investigated. Zn-MCM-22 catalysts containing ZnO were prepared via incipient wetness impregnation (IM) using liquid ion grafting, whereas those containing [ZnOx]2+ were prepared via atom-planting (AP) using the gas dechlorination reaction. The synergetic effects of BAS with micropore incorporated [ZnOx]2+ and external surface ZnO species on the dehydrogenation of different molecule size reactants n-octane and ethane were compared. The synergistic effect of ZnO and BAS can improve ethane dehydrogenation through aromatization, whereas [ZnOx]2+ as the introduced Lewis acid site (LAS) can override the bridge Si-OH-Al hydroxyl group BAS to inhibit the generation of benzene-toluene-xylene (BTX) and is more favorable for ethane dehydrogenation. The AP method can effectively regulate the n-octane dehydrogenation cracking product distribution by adjusting the volatilization time of ZnCl2 vapors to regulate the ratio of LAS/BAS in zeolites. The kinetic analysis was used to correlate the roles of the [ZnOx]2+ site and BAS in the dehydrogenation, hydrogen transfer, and cyclization reactions of n-octane and ethane, respectively. Moreover, the hydroxyl group grafted [ZnOx]2+ sites have better activity and stability for higher temperature dehydrogenation.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| | - Xiaoqiao Zhang
- Research Institute of Petroleum Processing, Sinopec, No. 18 Xueyuan Road, Haidian District, Beijing 10083, China
| | - Guiying Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| | - Jianhong Gong
- Research Institute of Petroleum Processing, Sinopec, No. 18 Xueyuan Road, Haidian District, Beijing 10083, China
| | - Fang Jin
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Novel Reactor & Green Chemical Technology Key Laboratory, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| |
Collapse
|
8
|
Sun H, Wang N, Xu Y, Wang F, Lu J, Wang H, An QF. Aromatic-aliphatic hydrocarbon separation with oriented monolayer polyhedral membrane. Science 2024; 386:1037-1042. [PMID: 39607917 DOI: 10.1126/science.adq5577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Aromatic-aliphatic hydrocarbon separation is a challenging but important industrial process. Pervaporation membrane technology has the potential for separating these mixtures. We developed an oriented monolayer polyhedral (OMP) membrane that consists of a monolayer of ordered polyhedral particles and is anchored by hyperbranched polymers. It contains a high density of straight, selective nanochannels, enabling the preferential transport of aromatic molecules. Compared with traditional mixed-matrix membranes with random orientations, the OMP membrane improves the pervaporation separation index for aromatic-aliphatic hydrocarbon mixtures with C6 and C7 compounds, surpassing the performance of existing membranes by 3 to 10 times. This high performance demonstrates the potential of OMP membranes for hydrocarbon molecular separation and their application in the value-added separation of naphtha feedstocks.
Collapse
Affiliation(s)
- Hao Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Naixin Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Yinghui Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Fengkai Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Jun Lu
- Department of Chemical and Biological Engineering, Monash University, Victoria, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Victoria, Australia
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
9
|
Sun M, Chen Y, Fan X, Li D, Song J, Yu K, Zhao Z. Electronic asymmetry of lattice oxygen sites in ZnO promotes the photocatalytic oxidative coupling of methane. Nat Commun 2024; 15:9900. [PMID: 39548121 PMCID: PMC11568292 DOI: 10.1038/s41467-024-54226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Photocatalytic oxidative coupling of methane with oxygen is promising to obtain valuable muti-carbon products, yet suffering low reactivity. Here, we apply cerium modifications on zinc oxide-supported gold catalysts based on the electronic asymmetry design of lattice oxygen to improve the coupling activity. The methane conversion rate exceeds 16000 μmol g-1 h-1 with muti-carbon selectivity of 94.9% and catalytic durability of 3 days, and it can increase to 34000 μmol g-1 h-1 under more thermal assistance, with a turnover frequency of 507 h-1 for ethane and an apparent quantum efficiency of 33.7% at 350 nm. According to systematic characterizations and theoretical analysis, cerium dopants not only can boost the formation of reactive oxygen species but also intervene in the vivacity of lattice oxygen by manipulating metal-oxygen bond strength, thereby leading to favorable methyl desorption to form ethane and quick water release. This work provides insight into the rational design of efficient photocatalysts for aerobic methane-to-ethane conversion.
Collapse
Affiliation(s)
- Mengyao Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Yanjun Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xiaoqiang Fan
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Dong Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Jiaxin Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Ke Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China.
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China.
| |
Collapse
|
10
|
Liu Y, Xue W, Liu X, Wei F, Lin X, Lu XF, Lin W, Hou Y, Zhang G, Wang S. Ultrafine Pt Nanoparticles on Defective Tungsten Oxide for Photocatalytic Ethylene Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402004. [PMID: 38686672 DOI: 10.1002/smll.202402004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Indexed: 05/02/2024]
Abstract
The selective conversion of ethane (C2H6) to ethylene (C2H4) under mild conditions is highly wanted, yet very challenging. Herein, it is demonstrated that a Pt/WO3-x catalyst, constructed by supporting ultrafine Pt nanoparticles on the surface of oxygen-deficient tungsten oxide (WO3-x) nanoplates, is efficient and reusable for photocatalytic C2H6 dehydrogenation to produce C2H4 with high selectivity. Specifically, under pure light irradiation, the optimized Pt/WO3-x photocatalyst exhibits C2H4 and H2 yield rates of 291.8 and 373.4 µmol g-1 h-1, respectively, coupled with a small formation of CO (85.2 µmol g-1 h-1) and CH4 (19.0 µmol g-1 h-1), corresponding to a high C2H4 selectivity of 84.9%. Experimental and theoretical studies reveal that the vacancy-rich WO3-x catalyst enables broad optical harvesting to generate charge carriers by light for working the redox reactions. Meanwhile, the Pt cocatalyst reinforces adsorption of C2H6, desorption of key reaction species, and separation and migration of light-induced charges to promote the dehydrogenation reaction with high productivity and selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation expose the key intermediates formed on the Pt/WO3-x catalyst during the reaction, which permits the construction of the possible C2H6 dehydrogenation mechanism.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Weichao Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoqing Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fen Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiahui Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
11
|
Su HS, Liu Y, Tian H, Chen D, Shen Q, Chang X, Lu Q, Xu B. Selective C-H Bond Activation in Propane with Molecular Oxygen over Cu(I)-ZSM-5 at Ambient Conditions. J Am Chem Soc 2024; 146:17170-17179. [PMID: 38865584 DOI: 10.1021/jacs.4c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Selective activation of C-H bonds in light alkanes under mild conditions is challenging but holds the promise of efficient upgrading of abundant hydrocarbons. In this work, we report the conversion of propane to propylene with ∼95% selectivity on Cu(I)-ZSM-5 with O2 at room temperature and pressure. The intraporous Cu(I) species was oxidized to Cu(II) during the reaction but could be regenerated with H2 at 220 °C. Diffuse reflectance ultraviolet spectroscopy indicated the presence of both Cu+-O2 and Cu2(μ-O2)2+ species in the zeolite pores during the reaction, and electron paramagnetic resonance results showed that propane activation occurred via a radical-mediated pathway distinct from that with H2O2 as the oxidant. Correlation between spectroscopic and reactivity results on Cu(I)-ZSM-5 with different Cu loadings suggests that the isolated intraporous Cu(I) species is the main active species in propane activation.
Collapse
Affiliation(s)
- Hai-Sheng Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Yiwei Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Hao Tian
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Dinghui Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Qikai Shen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Inner Mongolia 017000, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
- Ordos Laboratory, Inner Mongolia 017000, China
| |
Collapse
|
12
|
Ugartemendia A, Mercero JM, Jimenez-Izal E, de Cózar A. Doping Efects on Ethane/Ethylene Dehydrogenation Catalyzed by Pt 2X Nanoclusters. Chemphyschem 2024; 25:e202400095. [PMID: 38525872 DOI: 10.1002/cphc.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
The catalytic dehydrogenation of light alkanes is key to transform low-cost hydrocarbons to high value-added chemicals. Although Pt is extremely efficient at catalyzing this reaction, it suffers from coke formation that deactivates the catalyst. Dopants such as Sn are widely used to increase the stability and lifetime of Pt. In this work, the dehydrogenation reaction of ethane catalyzed by Pt3 and Pt2X (X=Si, Ge, Sn, P and Al) nanocatalysts has been studied computationally by means of density functional calculations. Our results show how the presence of dopants in the nanocluster structure affects its electronic properties and catalytic activity. Exploration of the potential energy surfaces show that non-doped catalyst Pt3 present low selectivity towards ethylene formation, where acetylene resulting from double dehydrogenation reaction will be obtained as a side product (in agreement with the experimental evidence). On the contrary, the inclusion of Si, Ge, Sn, P or Al as dopant agents implies a selectivity enhancement, where acetylene formation is not energetically favoured. These results demonstrate the effectiveness of such dopant elements for the design of Pt-based catalysts on ethane dehydrogenation.
Collapse
Affiliation(s)
- Andoni Ugartemendia
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - José M Mercero
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Elisa Jimenez-Izal
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Abel de Cózar
- Kimika Organikoa I Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, E-48009, Bilbao, Spain
| |
Collapse
|
13
|
Chen M, Liu H, Wang Y, Zhong Z, Zeng Y, Jin Y, Ye D, Chen L. Cobalt catalyzed ethane dehydrogenation to ethylene with CO 2: Relationships between cobalt species and reaction pathways. J Colloid Interface Sci 2024; 660:124-135. [PMID: 38241861 DOI: 10.1016/j.jcis.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024]
Abstract
TiO2, ZrO2 and a series of TiO2-ZrO2 (TxZ1, x means the atomic ratio of Ti/Zr = 10, 5, 1, 0.2 and 0.1) composite oxide supports were prepared through co-precipitation, and then 3 wt% Co was loaded through wetness impregnation methods. The obtained 3 wt% Co/TiO2 (3CT), 3 wt% Co/ZrO2 (3CZ) and 3 wt% Co/TxZ1 (3CTxZ1) catalysts were evaluated for the oxidative ethane dehydrogenation reaction with CO2 (CO2-ODHE) as a soft oxidant. 3CT1Z1 catalyst exhibits excellent catalytic properties, with C2H4 yield, C2H6 conversion and CO2 conversion about 24.5 %, 33.8 % and 18.0 % at 650 °C, respectively. X-Ray Diffraction (XRD), in-situ Raman, UV-vis diffuse reflectance spectra (UV-vis DRS), H2 temperature-programmed reduction (H2-TPR), Electron paramagnetic resonance (EPR) and quasi in-situ X-ray Photoelectron Spectroscopy (XPS) have been utilized to thoroughly characterize the investigated catalysts. The results revealed that 3CT1Z1 produced TiZrO4 solid solution with more metal defect sites and oxygen vacancies (Ov), promoting the formation of Co2+-TiZrO4 structure. Furthermore, the presence of Ov and Ti3+can facilitate the high dispersion and stabilization of Co2+, as well as suppressing the severe reduction of Co2+, leading to superior ethane oxidative dehydrogenation activity. Besides, less Co0 is beneficial to ODHE reaction, because of its promotion effects for reverse water gas shift reaction; however, more Co0 results in dry reforming reaction (DRE). This work will shed new lights for the design and preparation of highly efficient catalysts for ethylene production.
Collapse
Affiliation(s)
- Ming Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huan Liu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhiyong Zhong
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yu Zeng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuxin Jin
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
14
|
Liu Z, Lu AH, Wang D. Deep Potential Molecular Dynamics Study of Propane Oxidative Dehydrogenation. J Phys Chem A 2024; 128:1656-1664. [PMID: 38394031 DOI: 10.1021/acs.jpca.3c07859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Oxidative dehydrogenation (ODH) of light alkanes is a key process in the oxidative conversion of alkanes to alkenes, oxygenated hydrocarbons, and COx (x = 1,2). Understanding the underlying mechanisms extensively is crucial to keep the ODH under control for target products, e.g., alkenes rather than COx, with minimal energy consumption, e.g., during the alkene production or maximal energy release, e.g., during combustion. In this work, deep potential (DP), a neural network atomic potential developed in recent years, was employed to conduct large-scale accurate reactive dynamic simulations. The model was trained on a sufficient data set obtained at the density functional theory level. The intricate reaction network was elucidated and organized in the form of a hierarchical network to demonstrate the key features of the ODH mechanisms, including the activation of propane and oxygen, the influence of propyl reaction pathways on the propene selectivity, and the role of rapid H2O2 decomposition for sustainable and efficient ODH reactions. The results indicate the more complex reaction mechanism of propane ODH than that of ethane ODH and are expected to provide insights in the ODH catalyst optimization. In addition, this work represents the first application of deep potential in the ODH mechanistic study and demonstrates the ample advantages of DP in the study of mechanism and dynamics of complex systems.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Yang J, Wang L, Wan J, El Gabaly F, Fernandes Cauduro AL, Mills BE, Chen JL, Hsu LC, Lee D, Zhao X, Zheng H, Salmeron M, Wang C, Dong Z, Lin H, Somorjai GA, Rosner F, Breunig H, Prendergast D, Jiang DE, Singh S, Su J. Atomically synergistic Zn-Cr catalyst for iso-stoichiometric co-conversion of ethane and CO 2 to ethylene and CO. Nat Commun 2024; 15:911. [PMID: 38291043 PMCID: PMC10828418 DOI: 10.1038/s41467-024-44918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Developing atomically synergistic bifunctional catalysts relies on the creation of colocalized active atoms to facilitate distinct elementary steps in catalytic cycles. Herein, we show that the atomically-synergistic binuclear-site catalyst (ABC) consisting of [Formula: see text]-O-Cr6+ on zeolite SSZ-13 displays unique catalytic properties for iso-stoichiometric co-conversion of ethane and CO2. Ethylene selectivity and utilization of converted CO2 can reach 100 % and 99.0% under 500 °C at ethane conversion of 9.6%, respectively. In-situ/ex-situ spectroscopic studies and DFT calculations reveal atomic synergies between acidic Zn and redox Cr sites. [Formula: see text] ([Formula: see text]) sites facilitate β-C-H bond cleavage in ethane and the formation of Zn-Hδ- hydride, thereby the enhanced basicity promotes CO2 adsorption/activation and prevents ethane C-C bond scission. The redox Cr site accelerates CO2 dissociation by replenishing lattice oxygen and facilitates H2O formation/desorption. This study presents the advantages of the ABC concept, paving the way for the rational design of novel advanced catalysts.
Collapse
Affiliation(s)
- Ji Yang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lu Wang
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Jiawei Wan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Science-Based Industrial Park, Hsinchu, Taiwan
| | - Liang-Ching Hsu
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Daewon Lee
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xiao Zhao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Caiqi Wang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Zhun Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Hongfei Lin
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Gabor A Somorjai
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Fabian Rosner
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hanna Breunig
- Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, CA, USA.
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Seema Singh
- Sandia National Laboratories, Livermore, CA, US.
| | - Ji Su
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
16
|
Li X, Li W, Zhang J, Yin W, Xia Y, Xie K. Porous Single-crystalline Centimeter-sized α-Al 2 O 3 Monoliths for Selective and Durable Non-oxidative Dehydrogenation of Ethane. Angew Chem Int Ed Engl 2024; 63:e202315274. [PMID: 38050771 DOI: 10.1002/anie.202315274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
Alpha alumina (α-Al2 O3 ) are inert materials with outstanding thermal, chemical and mechanical stability. Herein, we fabricate porous single-crystalline (PSC) α-Al2 O3 monoliths at centimeter scale to endow them with high catalytic activity while maintaining their stability. We reduce PSC α-Al2 O3 monoliths to create oxygen vacancies in lattice and stabilize them by the ordered lattice to construct unsaturated Al-O coordination structures for enhancing the catalytic activity. The generation of oxygen vacancy at 18e wyckoff position contributes to the unsaturated Al-O coordination. As a case study, we demonstrate the outstanding performance with conversion (≈34 %) and selectivity (≈95 %) toward non-oxidative dehydrogenation of ethane to ethylene at 700 °C. We achieve the outstanding performance without obvious degradation even after a continuous operation over 1000 hours at 700 °C.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Wenting Li
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jie Zhang
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Wen Yin
- Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China
| | - Yuanguang Xia
- Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China
| | - Kui Xie
- Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
17
|
Ran H, Zhang S, Ni W, Jing Y. Precise activation of C-C bonds for recycling and upcycling of plastics. Chem Sci 2024; 15:795-831. [PMID: 38239692 PMCID: PMC10793209 DOI: 10.1039/d3sc05701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
The rapid accumulation of plastic waste has led to a severe environmental crisis and a noticeable imbalance between manufacturing and recycling. Fortunately, chemical upgradation of plastic waste holds substantial promise for addressing these challenges posed by white pollution. During plastic upcycling and recycling, the key challenge is to activate and cleave the inert C-C bonds in plastic waste. Therefore, this perspective delves deeper into the upcycling and recycling of polyolefins from the angle of C-C activation-cleavage. We illustrate the importance of C-C bond activation in polyolefin depolymerization and integrate molecular-level catalysis, active site modulation, reaction networks and mechanisms to achieve precise activation-cleavage of C-C bonds. Notably, we draw potential inspiration from the accumulated wisdom of related fields, such as C-C bond activation in lignin chemistry, alkane dehydrogenation chemistry, C-Cl bond activation in CVOC removal, and C-H bond activation, to influence the landscape of plastic degradation through cross-disciplinary perspectives. Consequently, this perspective offers better insights into existing catalytic technologies and unveils new prospects for future advancements in recycling and upcycling of plastic.
Collapse
Affiliation(s)
- Hongshun Ran
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Shuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Wenyi Ni
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Yaxuan Jing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| |
Collapse
|
18
|
Li F, Lai Y, Zeng Y, Chen X, Wang T, Yang X, Guo Q. Photocatalytic ethane conversion on rutile TiO 2(110): identifying the role of the ethyl radical. Chem Sci 2023; 15:307-316. [PMID: 38131087 PMCID: PMC10732131 DOI: 10.1039/d3sc05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Oxidative dehydrogenation of ethane (C2H6, ODHE) is a promising approach to producing ethene (C2H4) in the chemical industry. However, the ODHE needs to be operated at a high temperature, and realizing the ODHE under mild conditions is still a big challenge. Herein, using photocatalytic ODHE to obtain C2H4 has been achieved successfully on a model rutile(R)-TiO2(110) surface with high selectivity. Initially, the C2H6 reacts with hole trapped OTi- centers to produce ethyl radicals , which can be precisely detected by a sensitive TOF method, and then the majority of the radicals spontaneously dehydrogenate into C2H4 without another photo-generated hole. In addition, parts of the radicals rebound with diversified surface sites to produce C2 products via migration along the surface. The mechanistic model built in this work not only advances our knowledge of the C-H bond activation and low temperature C2H6 conversion, but also provides new opportunities for realizing the ODHE with high C2H4 efficiency under mild conditions.
Collapse
Affiliation(s)
- Fangliang Li
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Yuemiao Lai
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Yi Zeng
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Xiao Chen
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Tao Wang
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| | - Xueming Yang
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian Liaoning 116023 PR China
- Hefei National Laboratory Hefei 230088 PR China
| | - Qing Guo
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 PR China
| |
Collapse
|
19
|
Xie Z, Chen JG. Bimetallic-Derived Catalytic Structures for CO 2-Assisted Ethane Activation. Acc Chem Res 2023; 56:2447-2458. [PMID: 37647142 DOI: 10.1021/acs.accounts.3c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ConspectusIn recent years, the simultaneous upgrading of CO2 and ethane has emerged as a promising approach for generating valuable gaseous (CO, H2, and ethylene) and liquid (aromatics and C3 oxygenates) chemicals from the greenhouse gas CO2 and large-reserved shale gas. The key challenges for controlling product selectivity lie in the selective C-H and C-C bond cleavage of ethane with the assistance of CO2. Bimetallic-derived catalysts likely undergo alloying or oxygen-induced segregation under reaction conditions, thus providing diverse types of interfacial sites, e.g., metal/support (M/M'Ox) interface and metal oxide/metal (M'Ox/M) inverse interface, that are beneficial for selective CO2-assisted ethane upgrading. The alloying extent can be initially predicted by cohesive energy and atomic radius (or Wigner-Seitz radius), while the preference for segregation to form the on-top suboxide can be approximated using the work function, electronegativity, and binding strength of adsorbed oxygen. Furthermore, bimetallic-derived catalysts are typically supported on high surface area oxides. Modifying the reducibility and acidity/basicity of the oxide supports and introducing surface defects facilitate CO2 activation and oxygen supplies for ethane activation.Using in situ synchrotron characterization and density functional theory (DFT) calculations, we found that the electronic properties of oxygen species influence the selective cleavage of C-H/C-C bonds in ethane, with electron-deficient oxygen over the metal (or alloy) surface promoting nonselective bond scission to produce syngas and electron-enriched oxygen over the metal oxide/metal interface enhancing selective C-H scission to yield ethylene. We further demonstrate that the preferred structures of the catalyst surfaces, either alloy surfaces or metal oxide/metal inverse interfaces, can be controlled through the appropriate choice of metal combinations and their atomic ratios. Through a comprehensive comparison of experimental results and DFT calculations, the selectivity of C-C/C-H bond scission is correlated with the thermodynamically favorable bimetallic-derived structures (i.e., alloy surfaces or metal oxide/metal inverse interfaces) under reaction conditions over a wide range of bimetallic catalysts. These findings not only offer structural and mechanistic insights into bimetallic-derived catalysts but also provide design principles for selective catalysts for CO2-assisted activation of ethane and other light alkanes. This Account concludes by discussing challenges and opportunities in designing advanced bimetallic-derived catalysts, incorporating new reaction chemistries for other products, employing precise synthesis strategies for well-defined structures with optimized site densities, and leveraging time/spatial/energy-resolved in situ spectroscopy/scattering/microscopy techniques for comprehensive structural analysis. The research methodologies established here are helpful for the investigation of dynamic alloy and interfacial structures and should inspire more efforts toward the simultaneous upgrading of CO2 and shale gas.
Collapse
Affiliation(s)
- Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
20
|
Li J, Shen T, Wu Z, Bai S, Song Z, Song YF. Photocatalytic Oxidative Coupling of Ethane to n-Butane Using CO 2 as a Soft Oxidant over NiTi-Layered Double Hydroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304604. [PMID: 37635099 DOI: 10.1002/smll.202304604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Selective conversion of ethane (C2 H6 ) to high-value-added chemicals is a very important chemical process, yet it remains challenging owing to the difficulty of ethane activation. Here, a NiTi-layered double hydroxide (NiTi-LDH) photocatalyst is reported for oxidative coupling of ethane to n-butane (n-C4 H10 ) by using CO2 as an oxidant. Remarkably, the as-prepared NiTi-LDH exhibits a high selectivity for n-C4 H10 (92.35%) with a production rate of 62.06 µmol g-1 h-1 when the feed gas (CO2 /C2 H6 ) ratio is 2:8. The X-ray absorption fine structure (XAFS) and photoelectron characterizations demonstrate that NiTi-LDH possesses rich vacancies and high electron-hole separation efficiency, which can promote the coupling of C2 H6 to n-C4 H10 . More importantly, density functional theory (DFT) calculations reveal that ethane is first activated on the oxygen vacancies of the catalyst surface, and the C─C coupling pathway is more favorable than the C─H cleavage to C2 H4 or CH4 , resulting in the high production rate and selectivity for n-C4 H10 .
Collapse
Affiliation(s)
- Jiaxin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhaohui Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziheng Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| |
Collapse
|
21
|
Lambor SM, Kasiraju S, Vlachos DG. CKineticsDB─An Extensible and FAIR Data Management Framework and Datahub for Multiscale Modeling in Heterogeneous Catalysis. J Chem Inf Model 2023; 63:4342-4354. [PMID: 37436913 DOI: 10.1021/acs.jcim.3c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
A great advantage of computational research is its reproducibility and reusability. However, an enormous amount of computational research data in heterogeneous catalysis is barricaded due to logistical limitations. Sufficient provenance and characterization of data and computational environment, with uniform organization and easy accessibility, can allow the development of software tools for integration across the multiscale modeling workflow. Here, we develop the Chemical Kinetics Database, CKineticsDB, a state-of-the-art datahub for multiscale modeling, designed to be compliant with the FAIR guiding principles for scientific data management. CKineticsDB utilizes a MongoDB back-end for extensibility and adaptation to varying data formats, with a referencing-based data model to reduce redundancy in storage. We have developed a Python software program for data processing operations and with built-in features to extract data for common applications. CKineticsDB evaluates the incoming data for quality and uniformity, retains curated information from simulations, enables accurate regeneration of publication results, optimizes storage, and allows the selective retrieval of files based on domain-relevant catalyst and simulation parameters. CKineticsDB provides data from multiple scales of theory (ab initio calculations, thermochemistry, and microkinetic models) to accelerate the development of new reaction pathways, kinetic analysis of reaction mechanisms, and catalysis discovery, along with several data-driven applications.
Collapse
Affiliation(s)
- Siddhant M Lambor
- RAPID Manufacturing Institute, Delaware Energy Institute, University of Delaware, Newark, Delaware 19716, United States
| | - Sashank Kasiraju
- RAPID Manufacturing Institute, Delaware Energy Institute, University of Delaware, Newark, Delaware 19716, United States
| | - Dionisios G Vlachos
- RAPID Manufacturing Institute, Delaware Energy Institute, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation (CCEI), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
22
|
Velty A, Corma A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO 2 to chemicals and fuels. Chem Soc Rev 2023; 52:1773-1946. [PMID: 36786224 DOI: 10.1039/d2cs00456a] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For many years, capturing, storing or sequestering CO2 from concentrated emission sources or from air has been a powerful technique for reducing atmospheric CO2. Moreover, the use of CO2 as a C1 building block to mitigate CO2 emissions and, at the same time, produce sustainable chemicals or fuels is a challenging and promising alternative to meet global demand for chemicals and energy. Hence, the chemical incorporation and conversion of CO2 into valuable chemicals has received much attention in the last decade, since CO2 is an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon building block. Nevertheless, CO2 is the most oxidized form of carbon, thermodynamically the most stable form and kinetically inert. Consequently, the chemical conversion of CO2 requires highly reactive, rich-energy substrates, highly stable products to be formed or harder reaction conditions. The use of catalysts constitutes an important tool in the development of sustainable chemistry, since catalysts increase the rate of the reaction without modifying the overall standard Gibbs energy in the reaction. Therefore, special attention has been paid to catalysis, and in particular to heterogeneous catalysis because of its environmentally friendly and recyclable nature attributed to simple separation and recovery, as well as its applicability to continuous reactor operations. Focusing on heterogeneous catalysts, we decided to center on zeolite and ordered mesoporous materials due to their high thermal and chemical stability and versatility, which make them good candidates for the design and development of catalysts for CO2 conversion. In the present review, we analyze the state of the art in the last 25 years and the potential opportunities for using zeolite and OMS (ordered mesoporous silica) based materials to convert CO2 into valuable chemicals essential for our daily lives and fuels, and to pave the way towards reducing carbon footprint. In this review, we have compiled, to the best of our knowledge, the different reactions involving catalysts based on zeolites and OMS to convert CO2 into cyclic and dialkyl carbonates, acyclic carbamates, 2-oxazolidones, carboxylic acids, methanol, dimethylether, methane, higher alcohols (C2+OH), C2+ (gasoline, olefins and aromatics), syngas (RWGS, dry reforming of methane and alcohols), olefins (oxidative dehydrogenation of alkanes) and simple fuels by photoreduction. The use of advanced zeolite and OMS-based materials, and the development of new processes and technologies should provide a new impulse to boost the conversion of CO2 into chemicals and fuels.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
23
|
de Arriba A, Sánchez G, Sánchez-Tovar R, Concepción P, Fernández-Domene R, Solsona B, López Nieto JM. On the selectivity to ethylene during ethane ODH over M1-based catalysts. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
24
|
Wei F, Xue W, Yu Z, Lu XF, Wang S, Lin W, Wang X. Dynamic cooperations between lattice oxygen and oxygen vacancies for photocatalytic ethane dehydrogenation by a self-restoring LaVO4 catalyst. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
25
|
Zhu H, Jackson TA, Subramaniam B. Facile Ozonation of Light Alkanes to Oxygenates with High Atom Economy in Tunable Condensed Phase at Ambient Temperature. JACS AU 2023; 3:498-507. [PMID: 36873707 PMCID: PMC9975831 DOI: 10.1021/jacsau.2c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
We have demonstrated the oxidation of mixed alkanes (propane, n-butane, and isobutane) by ozone in a condensed phase at ambient temperature and mild pressures (up to 1.3 MPa). Oxygenated products such as alcohols and ketones are formed with a combined molar selectivity of >90%. The ozone and dioxygen partial pressures are controlled such that the gas phase is always outside the flammability envelope. Because the alkane-ozone reaction predominantly occurs in the condensed phase, we are able to harness the unique tunability of ozone concentrations in hydrocarbon-rich liquid phases for facile activation of the light alkanes while also avoiding over-oxidation of the products. Further, adding isobutane and water to the mixed alkane feed significantly enhances ozone utilization and the oxygenate yields. The ability to tune the composition of the condensed media by incorporating liquid additives to direct selectivity is a key to achieving high carbon atom economy, which cannot be achieved in gas-phase ozonations. Even in the liquid phase, without added isobutane and water, combustion products dominate during neat propane ozonation, with CO2 selectivity being >60%. In contrast, ozonation of a propane+isobutane+water mixture suppresses CO2 formation to 15% and nearly doubles the yield of isopropanol. A kinetic model based on the formation of a hydrotrioxide intermediate can adequately explain the yields of the observed isobutane ozonation products. Estimated rate constants for the formation of oxygenates suggest that the demonstrated concept has promise for facile and atom-economic conversion of natural gas liquids to valuable oxygenates and broader applications associated with C-H functionalization.
Collapse
Affiliation(s)
- Hongda Zhu
- Center
for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr., Lawrence, Kansas 66047, United States
| | - Timothy A. Jackson
- Center
for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr., Lawrence, Kansas 66047, United States
- Department
of Chemistry, University of Kansas, 1567 Irving Hill Rd, Lawrence, Kansas 66045, United States
| | - Bala Subramaniam
- Center
for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr., Lawrence, Kansas 66047, United States
- Department
of Chemical and Petroleum Engineering, University
of Kansas, 1530 W. 15th, Lawrence, Kansas 66045, United States
| |
Collapse
|
26
|
Suib SL, Přech J, Szaniawska E, Čejka J. Recent Advances in Tetra- (Ti, Sn, Zr, Hf) and Pentavalent (Nb, V, Ta) Metal-Substituted Molecular Sieve Catalysis. Chem Rev 2023; 123:877-917. [PMID: 36547404 DOI: 10.1021/acs.chemrev.2c00509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal substitution of molecular sieve systems is a major driving force in developing novel catalytic processes to meet current demands of green chemistry concepts and to achieve sustainability in the chemical industry and in other aspects of our everyday life. The advantages of metal-substituted molecular sieves include high surface areas, molecular sieving effects, confinement effects, and active site and morphology variability and stability. The present review aims to comprehensively and critically assess recent advances in the area of tetra- (Ti, Sn, Zr, Hf) and pentavalent (V, Nb, Ta) metal-substituted molecular sieves, which are mainly characterized for their Lewis acidic active sites. Metal oxide molecular sieve materials with properties similar to those of zeolites and siliceous molecular sieve systems are also discussed, in addition to relevant studies on metal-organic frameworks (MOFs) and some composite MOF systems. In particular, this review focuses on (i) synthesis aspects determining active site accessibility and local environment; (ii) advances in active site characterization and, importantly, quantification; (iii) selective redox and isomerization reaction applications; and (iv) photoelectrocatalytic applications.
Collapse
Affiliation(s)
- Steven L Suib
- Departments of Chemistry and Chemical and Biomolecular Engineering, and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Jan Přech
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Ewelina Szaniawska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
27
|
Predicting the catalytic performance of Nb-doped nickel oxide catalysts for the oxidative dehydrogenation of ethane by knowing their electrochemical properties. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
28
|
Xu Y, Hu W, Li Y, Su H, Liang W, Liu B, Gong J, Liu Z, Liu X. Manipulating the Cobalt Species States to Break the Conversion–Selectivity Trade-Off Relationship for Stable Ethane Dehydrogenation over Ligand-Free-Synthesized Co@MFI Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Wenjin Hu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Yufeng Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Haixia Su
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Weijun Liang
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Jianyi Gong
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Zhijian Liu
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| |
Collapse
|
29
|
State-of-the-Art Review of Oxidative Dehydrogenation of Ethane to Ethylene over MoVNbTeOx Catalysts. Catalysts 2023. [DOI: 10.3390/catal13010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ethylene is mainly produced by steam cracking of naphtha or light alkanes in the current petrochemical industry. However, the high-temperature operation results in high energy demands, high cost of gas separation, and huge CO2 emissions. With the growth of the verified shale gas reserves, oxidative dehydrogenation of ethane (ODHE) becomes a promising process to convert ethane from underutilized shale gas reserves to ethylene at a moderate reaction temperature. Among the catalysts for ODHE, MoVNbTeOx mixed oxide has exhibited superior catalytic performance in terms of ethane conversion, ethylene selectivity, and/or yield. Accordingly, the process design is compact, and the economic evaluation is more favorable in comparison to the mature steam cracking processes. This paper aims to provide a state-of-the-art review on the application of MoVNbTeOx catalysts in the ODHE process, involving the origin of MoVNbTeOx, (post-) treatment of the catalyst, material characterization, reaction mechanism, and evaluation as well as the reactor design, providing a comprehensive overview of M1 MoVNbTeOx catalysts for the oxidative dehydrogenation of ethane, thus contributing to the understanding and development of the ODHE process based on MoVNbTeOx catalysts.
Collapse
|
30
|
Valente JS, Quintana-Solórzano R, Armendáriz-Herrera H, Millet JMM. Decarbonizing Petrochemical Processes: Contribution and Perspectives of the Selective Oxidation of C 1–C 3 Paraffins. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jaime S. Valente
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, C.P. 07730, Ciudad de México, Mexico
| | - Roberto Quintana-Solórzano
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, C.P. 07730, Ciudad de México, Mexico
| | - Héctor Armendáriz-Herrera
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, C.P. 07730, Ciudad de México, Mexico
| | - Jean-Marc M. Millet
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, Lyon I, 2 Avenue A. Einstein, F-69626, Villeurbanne, France
| |
Collapse
|
31
|
Ce-Doped LaMnO3 Redox Catalysts for Chemical Looping Oxidative Dehydrogenation of Ethane. Catalysts 2023. [DOI: 10.3390/catal13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
As a novel reaction mode of oxidative dehydrogenation of ethane to ethylene, the chemical looping oxidative dehydrogenation (CL-ODH) of ethane to ethylene has attracted much attention. Instead of using gaseous oxygen, CL-ODH uses lattice oxygen in an oxygen carrier or redox catalyst to facilitate the ODH reaction. In this paper, a perovskite type redox catalyst LaMnO3+δ was used as a substrate, Ce3+ with different proportions was introduced into its A site, and its CL-ODH reaction performance for ethane was studied. The results showed that the ratio of Mn4+/Mn3+ on the surface of Ce-modified samples decreased significantly, and the lattice oxygen species in the bulk phase increased; these were the main reasons for improving ethylene selectivity. La0.7Ce0.3MnO3 showed the best performance during the ODH reaction and showed good stability in twenty redox cycle tests.
Collapse
|
32
|
Song L, Zhang R, Zhou C, Shu G, Ma K, Yue H. Room-temperature activation of the C-H bond in the dehydrogenation of ethane over a Cu/TiO 2 catalyst. Chem Commun (Camb) 2023; 59:478-481. [PMID: 36524553 DOI: 10.1039/d2cc05438h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel photocatalytic system of Cu/TiO2 for activation the C-H bond in the dehydrogenation of ethane to ethylene at room temperature is proposed. The optimized 1%-Cu/TiO2 catalyst achieved C2H6 conversion of 1.70%, C2H4 selectivity of 98.41%, and exhibited excellent stability. The active site Cuδ+ showed high dispersion on the TiO2 surface. Theoretical calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy revealed a reaction mechanism: C2H6 is first activated by adsorption over the Cu4C/TiO2 catalyst with elongation of the C-H bond, attacked by h+/˙OH to form ethyl radicals, which are then converted to C2H4.
Collapse
Affiliation(s)
- Lei Song
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ronghao Zhang
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changan Zhou
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guoqiang Shu
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kui Ma
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hairong Yue
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.,Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
33
|
Zenkovets GA, Shutilov AA, Bondareva VM, Sobolev VI, Prosvirin IP, Suprun EA, Ishchenko AV, Marchuk AS, Tsybulya SV, Gavrilov VY. Effect of Gadolinium Additives on the Active Phase Morphology and Physicochemical and Catalytic Properties of MoVSbNbGdOx/SiO2 Catalysts in the Oxidative Dehydrogenation of Ethane to Ethylene. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422060179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
34
|
Liu L, Li H, Zhou H, Chu S, Liu L, Feng Z, Qin X, Qi J, Hou J, Wu Q, Li H, Liu X, Chen L, Xiao J, Wang L, Xiao FS. Rivet of cobalt in siliceous zeolite for catalytic ethane dehydrogenation. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Li F, Chen X, Lai Y, Wang T, Yang X, Guo Q. Low-Temperature C-H Bond Activation via Photocatalysis: Highly Efficient Ethylbenzene Dehydrogenation into Styrene on Rutile TiO 2(110). J Phys Chem Lett 2022; 13:9186-9194. [PMID: 36170050 DOI: 10.1021/acs.jpclett.2c02269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The direct dehydrogenation of hydrocarbons to olefins under mild conditions is an atom-economical but challenging route. Here, we have investigated photocatalytic ethylbenzene dehydrogenation into styrene on rutile(R)-TiO2(110) using the temperature-programmed desorption (TPD) method. The results demonstrate that photocatalytic ethylbenzene dehydrogenation into styrene occurs on R-TiO2(110) in a stepwise manner, in which the initial α-C-H bond cleavage occurs facilely under UV irradiation via a possible homolytic hydrogen atom transfer process and then is followed by the second C-H bond cleavage induced by either photocatalysis at ∼120 K or thermocatalysis at >400 K. With preadsorbed oxygen atoms to eliminate hydrogen atoms from ethylbenzene dehydrogenation and excess electrons on the surface, the yield of styrene is largely enhanced by about 4 times. The results not only demonstrate a photocatalytic route for ethylbenzene dehydrogenation into styrene on R-TiO2(110) but also advance our understanding of the photocatalytic activation of the saturated C-H bond with TiO2.
Collapse
Affiliation(s)
- Fangliang Li
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xiao Chen
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Yuemiao Lai
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Tao Wang
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xueming Yang
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P. R. China
- Hefei National Laboratory, Hefei, Anhui 230088, P. R. China
| | - Qing Guo
- Shenzhen Key Laboratory of Energy Chemistry & Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
36
|
Veselov GB, Ilyina EV, Trenikhin MV, Vedyagin AA. Two-Component Ni–Mg–O/V–Mg–O Catalytic System: I. Synthesis and Physicochemical and Catalytic Properties in Oxidative Dehydrogenation of Ethane. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422050147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Yao R, Pinals J, Dorakhan R, Herrera JE, Zhang M, Deshlahra P, Chin YHC. Cobalt-Molybdenum Oxides for Effective Coupling of Ethane Activation and Carbon Dioxide Reduction Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Yao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Key Laboratory of Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
- Postdoctoral Programme Office, Guosen Securities Co., Ltd., Shenzhen 518001, China
| | - Jayson Pinals
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Roham Dorakhan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - José E. Herrera
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Minhua Zhang
- Key Laboratory of Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
| | - Prashant Deshlahra
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ya-Huei Cathy Chin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
38
|
Ivan ŞB, Urdă A, Marcu IC. Nickel oxide-based catalysts for ethane oxidative dehydrogenation: a review. CR CHIM 2022. [DOI: 10.5802/crchim.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
40
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
41
|
Xu C, Ge C, Sun D, Fan Y, Wang XB. Boron nitride materials as emerging catalysts for oxidative dehydrogenation of light alkanes. NANOTECHNOLOGY 2022; 33:432003. [PMID: 35760042 DOI: 10.1088/1361-6528/ac7c23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Light olefins (C2-C4) play a crucial role as basic ingredients in chemical industry, and oxidative dehydrogenation (ODH) of light alkanes to olefins has been one of the popular routes since the shale gas revolution. ODH of light alkanes has advantages on energy-and-cost saving as compared with traditional direct dehydrogenation, but it is restricted by its overoxidation which results in the relatively low olefin selectivity. Boron nitride (BN), an interesting nanomaterial with an analogous structure to graphene, springs out and manifests the superior performance as advanced catalysts in ODH, greatly improving the olefin selectivity under high alkane conversion. In this review, we introduce BN nanomaterials in four dimensions together with typical methods of syntheses. Traditional catalysts for ODH are also referred as comparison on several indicators-olefin yields and preparation techniques, including the metal-based catalysts and the non-metal-based catalysts. We also surveyed the BN catalysts for ODH reaction in recent five years, focusing on the different dimensions of BN together with the synthetic routes accounting for the active sites and the catalytic ability. Finally, an outlook of the potential promotion on the design of BN-based catalysts and the possible routes for the exploration of BN-related catalytic mechanisms are proposed.
Collapse
Affiliation(s)
- Chenyang Xu
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing, 210093, People's Republic of China
| | - Cong Ge
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing, 210093, People's Republic of China
| | - Dandan Sun
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing, 210093, People's Republic of China
| | - Yining Fan
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xue-Bin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing, 210093, People's Republic of China
| |
Collapse
|
42
|
Ullah Z, Khan M, Khan I, Jamil A, Sikandar U, Mehran MT, Mubashir M, Tham PE, Khoo KS, Show PL. Recent Progress in Oxidative Dehydrogenation of Alkane (C2–C4) to Alkenes in a Fluidized Bed Reactor Under Mixed Metallic Oxide Catalyst. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Sánchez-García JL, Handy BE, Rodríguez ÁG, González-Chávez MM, García de León R, Cardenas-Galindo MG. Relating the Synthesis Method of VOX/CeO2/SiO2 Catalysts to Red-Ox Properties, Acid Sites, and Catalytic Activity for the Oxidative Dehydrogenation of Propane and n-Butane. Top Catal 2022. [DOI: 10.1007/s11244-022-01661-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Li D, Kong L, Fan X, Xie Z, Xiao X, Zhao Z. Porous Ni−Al−O Fabricated by a Facile Hydrothermal Method: Improved Catalytic Performance for the Oxidative Dehydrogenation of Ethane to Produce Ethylene. ChemistrySelect 2022. [DOI: 10.1002/slct.202201473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong Li
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| | - Lian Kong
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xiaoqiang Fan
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Zean Xie
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xia Xiao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 China
| |
Collapse
|
45
|
Iizuka T, Miura T, Sano M, Hayashi T, Hanaya M, Miyake T. Dehydrogenation of Ethane to Ethylene on Pt/Zincosilicate. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
Xie Z, Zhang X, Zhao J, Wang L, Fan X, Kong L, Song Y, Zhao Z. Design and Synthesis of Vanadium‐Titanium‐Incorporated Mesoporous Silica Catalysts for the Oxidative Dehydrogenation of Propane. ChemistrySelect 2022. [DOI: 10.1002/slct.202104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zean Xie
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xiao Zhang
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Jin Zhao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Lu Wang
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Xiaoqiang Fan
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Lian Kong
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Yangyang Song
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment Shenyang Normal University Shenyang 110034 China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum, Chang Ping Beijing 102249 China
| |
Collapse
|
47
|
Mixed Metal Oxides of M1 MoVNbTeOx and TiO2 as Composite Catalyst for Oxidative Dehydrogenation of Ethane. Catalysts 2022. [DOI: 10.3390/catal12010071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Composite catalysts of mixed metal oxides were prepared by mixing a phase-pure M1 MoVNbTeOx with anatase-phase TiO2. Two methods were used to prepare the composite catalysts (the simple physically mixed or sol-gel method) for the improvement of the catalytic performance in the oxidative dehydrogenation of ethane (ODHE) process. The results showed that TiO2 particles with a smaller particle size were well dispersed on the M1 surface for the sol-gel method, which presented an excellent activity for ODHE. At the same operating condition (i.e., the contact time of 7.55 gcat·h/molC2H6 and the reaction temperature of 400 °C), the M1-TiO2-SM and M1-TiO2-PM achieved the space time yields of 0.67 and 0.52 kgC2H4/kgcat/h, respectively, which were about ~76% and ~35% more than that of M1 catalyst (0.38 kgC2H4/kgcat/h), respectively. The BET, ICP, XRD, TEM, SEM, H2-TPR, C2H6-TPSR, and XPS techniques were applied to characterize the catalysts. It was noted that the introduction of TiO2 raised the V5+ abundance on the catalyst surface as well as the reactivity of active oxygen species, which made contribution to the promotion of the catalytic performance. The surface morphology and crystal structure of used catalysts of either M1-TiO2-SM or M1-TiO2-PM remained stable as each fresh catalyst after 24 h time-on-stream tests.
Collapse
|
48
|
Hu W, Xu Y, Xin J, Liu B, Jiang F, Liu X. Stable co-production of olefins and aromatics from ethane over Co 2+-exchanged HZSM-5 zeolite. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00664b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Olefins and aromatics can be stably co-produced from ethane over a Co-exchanged HZSM-5 catalyst in which isolated Co(ii) species are anchored at Brønsted acid sites and active for efficient ethane dehydrogenation.
Collapse
Affiliation(s)
- Wenjin Hu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Jian Xin
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
49
|
Alvarado-Camacho C, Poissonnier J, Thybaut JW, Castillo CO. Unravelling the redox mechanism and kinetics of a highly active and selective Ni-based material for the oxidative dehydrogenation of ethane. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00275a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bridging the gap between catalysis and reaction engineering during the kinetic analysis of the oxidative dehydrogenation of ethane over a highly active and selective Ni-based material.
Collapse
Affiliation(s)
- Carlos Alvarado-Camacho
- Laboratory of Catalytic Reactor Engineering Applied to Chemical and Biological Systems, Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina C.P, 09340, Ciudad de México, Mexico
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Jeroen Poissonnier
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Joris W. Thybaut
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Carlos O. Castillo
- Laboratory of Catalytic Reactor Engineering Applied to Chemical and Biological Systems, Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina C.P, 09340, Ciudad de México, Mexico
| |
Collapse
|
50
|
Zhou Y, Chai Y, Li X, Wu Z, Lin J, Han Y, Li L, Qi H, Gu Y, Kang L, Wang X. Defect-Rich TiO 2 In Situ Evolved from MXene for the Enhanced Oxidative Dehydrogenation of Ethane to Ethylene. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanliang Zhou
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yicong Chai
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zihao Wu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yujia Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Kang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|