1
|
Ma Z, Li Y, Sun K, Ahmed J, Tian W, Xu J. Insights into the roles of superficial lattice oxygen in formaldehyde oxidation on birnessite. NANOSCALE 2024; 16:12541-12549. [PMID: 38884124 DOI: 10.1039/d4nr01089b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
K+-modified birnessite materials were constructed to remove formaldehyde (HCHO) in this work. The introduction of K+ led to weakening of the Mn-O bonds and enhanced the migration of superficial lattice oxygen, resulting in improved redox properties and catalytic activity. MnO2-3K with the largest specific surface area and greatest abundance of superficial lattice oxygen showed the best catalytic performance at 30-130 °C. The operando analyses reveal that HCHO is primarily activated to dioxymethylene (DOM) and subsequently converted to formate species (*COOH). The accumulation of formate species caused a decline in catalytic performance during extended testing at 30 °C, a challenge that could be mitigated by raising the temperature. Theoretical studies disclose that the *COOH → *H2CO3 step with the largest energy barrier is the rate limiting step for HCHO deep decomposition. Molecular oxygen could be activated at oxygen vacancies to replenish the depleted lattice oxygen after decomposition of carbonate species (*H2CO3) and CO2 and H2O desorption. The adsorbed oxygen and water did not limit the deep oxidation of HCHO. This research presents a promising approach for designing highly efficient, non-noble metal catalysts for formaldehyde degradation.
Collapse
Affiliation(s)
- Zhaoxia Ma
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Yongqi Li
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Kongyuan Sun
- College of Chemistry & Environment, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, China
| | - Jinjia Xu
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Blvd, St. Louis, 63121, MO, USA
| |
Collapse
|
2
|
Lv H, Xia X, Sun S, Niu Z, Liu J, Li X. Polylactic acid electrospun membrane loaded with cerium nitrogen co-doped titanium dioxide for visible light-triggered antibacterial photocatalytic therapy. Front Microbiol 2024; 15:1375956. [PMID: 38711973 PMCID: PMC11071086 DOI: 10.3389/fmicb.2024.1375956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Wound infection caused by multidrug-resistant bacteria poses a serious threat to antibiotic therapy. Therefore, it is of vital importance to find new methods and modes for antibacterial therapy. The cerium nitrogen co-doped titanium dioxide nanoparticles (N-TiO2, 0.05Ce-N-TiO2, 0.1Ce-N-TiO2, and 0.2Ce-N-TiO2) were synthesized using the hydrothermal method in this study. Subsequently, electrospinning was employed to fabricate polylactic acid (PLA) electrospun membranes loaded with the above-mentioned nanoparticles (PLA-N, PLA-0.05, PLA-0.1, and PLA-0.2). The results indicated that cerium and nitrogen co-doping tetrabutyl titanate enhanced the visible light photocatalytic efficiency of TiO2 nanoparticles and enabled the conversion of ultraviolet light into harmless visible light. The photocatalytic reaction under visible light irradiation induced the generation of ROS, which could effectively inhibit the bacterial growth. The antibacterial assay showed that it was effective in eliminating S. aureus and E. coli and the survival rates of two types of bacteria under 30 min of irradiation were significantly below 20% in the PLA-0.2 experimental group. Moreover, the bactericidal membranes also have excellent biocompatibility performance. This bio-friendly and biodegradable membrane may be applied to skin trauma and infection in future to curb drug-resistant bacteria and provide more alternative options for antimicrobial therapy.
Collapse
Affiliation(s)
- Hanlin Lv
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Sa Sun
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zhaojun Niu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Fan J, Wang T, Wu B, Wang C. Highly Active Amino-Fullerene Derivative-Modified TiO2 for Enhancing Formaldehyde Degradation Efficiency under Solar-Light Irradiation. NANOMATERIALS 2022; 12:nano12142366. [PMID: 35889590 PMCID: PMC9321472 DOI: 10.3390/nano12142366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023]
Abstract
Formaldehyde (HCHO) is a ubiquitous indoor pollutant that seriously endangers human health. The removal of formaldehyde effectively at room temperature has always been a challenging problem. Here, a kind of amino-fullerene derivative (C60-EDA)-modified titanium dioxide (C60-EDA/TiO2) was prepared by one-step hydrothermal method, which could degrade the formaldehyde under solar light irradiation at room temperature with high efficiency and stability. Importantly, the introduction of C60-EDA not only increases the adsorption of the free formaldehyde molecules but also improves the utilization of sunlight and suppresses photoelectron-hole recombination. The experimental results indicated that the C60-EDA/TiO2 nanoparticles exhibit much higher formaldehyde removal efficiency than carboxyl-fullerene-modified TiO2, pristine TiO2 nanoparticles, and almost all other reported formaldehyde catalysts especially in the aspect of the quality of formaldehyde that is treated by catalyst with unit mass (mHCHO/mcatalyst = 40.85 mg/g), and the removal efficiency has kept more than 96% after 12 cycles. Finally, a potential formaldehyde degradation pathway was deduced based on the situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) and reaction intermediates. This work provides some indications into the design and fabrication of the catalysts with excellent catalytic performances for HCHO removal at room temperature.
Collapse
Affiliation(s)
- Jingbiao Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.F.); (T.W.)
| | - Tao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.F.); (T.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.F.); (T.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.W.); (C.W.)
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (J.F.); (T.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.W.); (C.W.)
| |
Collapse
|
4
|
Zhang Y, Wang Y, Zhao D, Wang B, Pu L, Fan M, Liang X, Yin Y, Hu Z, Yan X. Visible light in situ driven electron accumulation at the Ti–Mn–O 3 sites of TiO 2 hollow spheres for photocatalytic hydrogen production. NEW J CHEM 2022. [DOI: 10.1039/d2nj02628g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mn atoms and oxygen vacancies induce the formation of Ti–Mn–O3 sites by visible light-driven, which further regulates the surface potential, visible-light absorption, and carrier separation, resulting in superior H2 evolution.
Collapse
Affiliation(s)
- Yujiao Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yan Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Dan Zhao
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
| | - Baoyu Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Ling Pu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Meng Fan
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| | - Zhao Hu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ximing Yan
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
5
|
He P, Zhao Z, Tan Y, E H, Zuo M, Wang J, Yang J, Cui S, Yang X. Photocatalytic Degradation of Deoxynivalenol Using Cerium Doped Titanium Dioxide under Ultraviolet Light Irradiation. Toxins (Basel) 2021; 13:481. [PMID: 34357953 PMCID: PMC8310149 DOI: 10.3390/toxins13070481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Deoxynivalenol (DON) is a major mycotoxin with high toxicity that often contaminates grains, foods and feeds. The traditional approaches for DON removal are difficult to meet industry and agriculture demands due to the high stability of the DON molecule. Therefore, there is an urgent need to develop green and effective strategies for DON degradation. In this study, a batch of photocatalytic nanomaterials of cerium (Ce) doped titanium dioxide (TiO2) were successfully prepared by sol-gel method. The catalysts were systematically characterized by XRD, HRTEM, FT-IR, UV-Vis and XPS. The catalyst 0.5Ce-TiO2 showed superior photocatalytic activity for DON degradation in aqueous solution under ultraviolet light irradiation, better than that of traditional photocatalyst pure TiO2, and 96% DON with initial concentration of 5.0 mg/L could be degraded in 4 h. In addition, the two possible degradation intermediate products C5H8O3 and C17H18O6 were identified, the photocatalytic degradation mechanism and degradation pathway were studied. The results indicate that Ce doped TiO2 photocatalyst can be used to reduce DON effectively.
Collapse
Affiliation(s)
- Pengzhen He
- College of Chemistry and Chemical Engineering, Mu Danjiang Normal University, Mu Danjiang 157012, China; (P.H.); (M.Z.)
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (H.E.); (J.W.); (J.Y.)
| | - Zhiyong Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (H.E.); (J.W.); (J.Y.)
| | - Yanglan Tan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Hengchao E
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (H.E.); (J.W.); (J.Y.)
| | - Minghui Zuo
- College of Chemistry and Chemical Engineering, Mu Danjiang Normal University, Mu Danjiang 157012, China; (P.H.); (M.Z.)
| | - Jianhua Wang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (H.E.); (J.W.); (J.Y.)
| | - Junhua Yang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (H.E.); (J.W.); (J.Y.)
| | - Shuxin Cui
- College of Chemistry and Chemical Engineering, Mu Danjiang Normal University, Mu Danjiang 157012, China; (P.H.); (M.Z.)
| | - Xianli Yang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (Z.Z.); (H.E.); (J.W.); (J.Y.)
| |
Collapse
|
6
|
Li B, Li Q, Gupta B, He C, Yang J. Boosting visible-light-driven catalytic hydrogen evolution via surface Ti 3+ and bulk oxygen vacancies in urchin-like hollow black TiO 2 decorated with RuO 2 and Pt dual cocatalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01706j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel hollow urchin-like black RuO2/TiO2/Pt nanomaterial with surface Ti3+ and bulk single-electron oxygen vacancies (Vo·) was used for enhancing the hydrogen evolution performance under visible light.
Collapse
Affiliation(s)
- Bowen Li
- Engineering Research Center for Nanomaterials
- Henan University
- Kaifeng 475004
- China
| | - Qiuye Li
- Engineering Research Center for Nanomaterials
- Henan University
- Kaifeng 475004
- China
| | - Bhavana Gupta
- Engineering Research Center for Nanomaterials
- Henan University
- Kaifeng 475004
- China
| | - Chunqing He
- School of Physics and Technology
- Wuhan University
- Wuhan 430072
- China
| | - Jianjun Yang
- Engineering Research Center for Nanomaterials
- Henan University
- Kaifeng 475004
- China
| |
Collapse
|