1
|
Li Y, Kang Y, Xiao J, Zhang Z. Mechanism and Origins of Regio- and Stereoselectivities of NHC-Catalyzed Dearomative Annulation of Benzoazoles and Cinnamaldehydes from DFT. J Phys Chem A 2025; 129:2482-2492. [PMID: 40042290 DOI: 10.1021/acs.jpca.4c08373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A theoretical study on the mechanism, regioselectivity, and enantioselectivity of NHC-catalyzed dearomatizing annulation of benzoxazoles with enals has been conducted using density functional theory calculations. Our calculated results indicate that the favored mechanism occurs through eight reaction steps: initial binding of the NHC to enals, followed by formation of the Breslow intermediate via proton transfer. Subsequent oxidation generates the α,β-unsaturated acylazolium intermediate, which can undergo Michael addition with benzoxazoles. Sequential protonation/deprotonation/cyclization produces the six-membered cyclic intermediate that undergoes catalyst elimination, leading to the final product. DABCO·H+ was found to play important roles in proton transfer and cyclization. Without DABCO·H+, the energy barrier up to 44.2 kcal/mol for step 2 is too high to be accessible. With DABCO·H+, the corresponding value is lowered to 18.6 kcal/mol. The energy barrier for cyclization can be lowered by 7.4 kcal/mol by using DABCO·H+. The Michael addition step determines both the enantioselectivity and the regioselectivity. According to NCI analysis, the enantioselectivity is controlled by the strong interactions (such as C-H···O, C-H···N, and π···π) between the α,β-unsaturated acylazolium intermediate and benzoxazoles. We also discuss the solvent and substituent effects on the enantioselectivity and the role of the NHC. The mechanistic insights obtained in the present study would help improving current reaction systems or designing new synthetic routes.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Yanlong Kang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Junjie Xiao
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Road 185, Anshan 114051, China
| |
Collapse
|
2
|
Yu X, Wang Y. DFT study on the mechanism of phosphine-catalyzed ring-opening reaction of cyclopropyl ketones. Org Biomol Chem 2024; 23:167-173. [PMID: 39523956 DOI: 10.1039/d4ob01459f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the present study, the mechanism, origin of chemoselectivity, and substituent effects of the phosphine-catalyzed ring-opening reaction of cyclopropyl ketone have been investigated using the DFT method. Multiple pathways, including the formation of hydrofluorenone, the Cloke-Wilson product, and cyclopenta-fused product, were studied and compared. The computational results show that the pathway for the formation of hydrofluorenone is the most favorable one, which involves four processes: nucleophilic substitution to open the three-membered ring, an intramolecular Michael addition for the formation of an enolate intermediate, an intramolecular [1,5]-proton transfer to give ylide, and an intramolecular Wittig reaction to deliver the final product. For disclosing the origin of chemoselectivity, structural analysis and local reactivity index analysis were performed. Moreover, substituent effects were also considered using QTAIM analysis. The current study would provide useful insights for understanding phosphine-catalyzed chemoselective reactions.
Collapse
Affiliation(s)
- Xiaohan Yu
- College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan Province, P. R. China
| | - Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, 450001, Zhengzhou, Henan Province, P.R. China.
| |
Collapse
|
3
|
Li Y, Zhang M, Zhang Z. Mechanisms and origins of stereoselectivity in the NHC-catalyzed oxidative reaction of enals and pyrroles: a density functional theory study. Phys Chem Chem Phys 2024; 26:28112-28123. [PMID: 39495196 DOI: 10.1039/d4cp03349c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The mechanism, chemoselectivity and stereoselectivity in the NHC-catalyzed reaction between enals and pyrroles for the synthesis of 5,6-dihydroindolizine were studied using DFT calculations. The cycle for catalytic generation of 5,6-dihydroindolizine proceeds via seven steps: (1) addition of the NHC to enal, (2) formation of a Breslow intermediate through [1,2]-proton transfer, (3) oxidation, (4) Michael addition, (5) [2+2] cycloaddition, (6) liberation of NHCs and (7) decarboxylation. Our results show that the presence of DMAP·H+ lowers the barrier for [1,2]-proton transfer. In addition, NHC·H+ plays a key role in decarboxylation. Michael addition which involves the formation of a new C-C bond was identified to be the chemo- and stereoselectivity-determining step, leading to the experimentally observed 5S,6R-dihydroindolizine. Analysis of the noncovalent interactions revealed that the observed stereoselectivity is attributed to the differential weak interactions (CH⋯π, LP⋯π and CH⋯CH) involved in the transition states during the Michael addition step. The computational results not only rationalize experimental observations but also provide some useful information for the future design of new catalytic processes.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China.
| | - Mingchao Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China.
| |
Collapse
|
4
|
Gao G, Liang PY, Jin N, Zhao ZB, Tian XC, Xie D, Tu CZ, Zhang HR, Zhou PP, Yang Z. Mechanism and origin of enantioselectivity for organocatalyzed asymmetric heteroannulation of alkynes in the construction of axially chiral C2-arylquinoline. Org Biomol Chem 2024; 22:7500-7517. [PMID: 39189805 DOI: 10.1039/d4ob01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Axially chiral C2-arylquinoline has been successfully constructed via asymmetric heteroannulation of alkynes catalyzed by chiral phosphoric acid with high yield and high enantioselectivity. Inspired by this intriguing work, theoretical calculations have been carried out, and the detailed reaction mechanism has been elaborated, in which the whole reaction can be divided into steps including hydrogen transfer, C-N bonding, annulation reaction and the final dehydration processes. The initial hydrogen-transfer reaction has two possible pathways, while the subsequent C-N bonding process has eight possible pathways. Then, after the annulation reaction and the final dehydration processes, the major product and byproduct were formed. QTAIM and IGMH analyses were used to illustrate the role of weak intermolecular interactions in the catalytic process, and the distortion/interaction and EDA analyses provided a deeper understanding of the origin of enantioselectivity. The calculated results are consistent with the experimental results. This work would provide valuable insights into asymmetric reactions catalyzed by chiral phosphoric acid.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Peng-Yu Liang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Nengzhi Jin
- Key Laboratory of Advanced Computing of Gansu Province, Gansu Computing Center, 42 Qingyang Road, Lanzhou 730000, P. R. China
| | - Zi-Bo Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Xiao-Cheng Tian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Chi-Zhou Tu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Hai-Rong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, Advanced Catalysis Center, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhaoyong Yang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100050, P. R. China.
| |
Collapse
|
5
|
Luo Y, Zhao M, Wang Y. Mechanism and Origin of Stereoselectivity of N-Heterocyclic Carbene (NHC)-Catalyzed Transformation Reaction of Benzaldehyde with o-QDM as Key Intermediate: A DFT Study. J Phys Chem A 2024; 128:6190-6198. [PMID: 39024177 DOI: 10.1021/acs.jpca.4c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
N-heterocyclic carbene (NHC)-bound ortho-quinodimethane, served as a nucleophile, has occupied an important position for constructing various all-carbon or heterocyclic compounds and attracted increasing attention for the functionalization of benzylic carbon of aromatic aldehydes, whereas the mechanistic studies on the generation and transformations of dienolate intermediate are rare. In the present study, the mechanism of activation/transformation of aldehyde catalyzed by NHC was theoretically studied using the density functional theory (DFT) method. Based on the calculations, the nucleophilic addition process is the stereoselectivity-determining step with RS-configured product being generated preferentially. Furthermore, non-covalent index (NCI) and atoms-in-molecules (AIM) analyses have been performed to disclose the origin of stereoselectivity, by which the larger number and stronger weak interactions are the key for stabilizing the low-energy transition state and thus leading to the stereoselectivity inducing.
Collapse
Affiliation(s)
- Yilu Luo
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Miao Zhao
- Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital & Zhengzhou Children's Hospital, Zhengzhou 450018, Henan, P. R. China
| | - Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
6
|
Reyes E, Uria U, Prieto L, Carrillo L, Vicario JL. Organocatalysis as an enabling tool for enantioselective ring-opening reactions of cyclopropanes. Chem Commun (Camb) 2024; 60:7288-7298. [PMID: 38938176 DOI: 10.1039/d4cc01933d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The rich reactivity profile of cyclopropanes has been extensively explored to trigger new organic transformations that enable unusual disconnective approaches to synthesize molecular motifs that are not easily reached through conventional reactions. In particular, the chemistry of cyclopropanes has received special attention in the last decade, with multiple new approaches that capitalize on the use of organocatalysis for the activation of the cyclopropane scaffold. This situation has also opened the possibility of developing enantioselective variants of many reactions that until now were only carried out in an enantiospecific or diastereoselective manner. Our group has been particularly active in this field, focusing more specifically on the use of aminocatalysis and Brønsted acid catalysis as major organocatalytic activation manifolds to trigger new unprecedented transformations involving cyclopropanes that add to the current toolbox of general methodologies available to organic chemists for the enantioselective synthesis of chiral compounds.
Collapse
Affiliation(s)
- Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Uxue Uria
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Luisa Carrillo
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
7
|
Zheng XF, Zhou DG, Yang LJ. DFT investigation of the DDQ-catalytic mechanism for constructing C-O bonds. Org Biomol Chem 2024; 22:3693-3707. [PMID: 38625132 DOI: 10.1039/d4ob00346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In this study, we investigated the photo-catalytic mechanisms for the construction of C-O bonds from arenes (benzene, 2',6'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid, or 2,4-dichloro-1-fluorobenzene), catalyzed by 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). All the structures for the Gibbs free surfaces were calculated at the M06-2X-D3/ma-def2-SVP level in the SMD solvent model. Also, TDDFT calculations of DDQ were performed at the PBE1PBE-D3/ma-def2-SVP level in the SMD solvent model. The computational results indicated that DDQ, serving as a photo-catalyst, would be excited under visible light of 450 nm, aligning well with experimental observations as reflected in the UV-vis spectrum. Gibbs free energy surface analyses of the three reactions suggested that the path involving 3DDQ* activating the reactant (-COOH, H2O, or CH3OH) is favorable. Additionally, the role of O2 was investigated, revealing that it could facilitate the recycling of DDQ by lowering the energy barrier for the conversion of the DDQH˙ radical (not DDQH2) into DDQ. The use of ρhole and ρele can reveal the photo-catalytic reaction and charge transfer processes, while localized orbital locator isosurfaces and electron spin density isosurface graphs were employed to analyze structures and elucidate the single electron distribution. These computational results offer valuable insights into the studied interactions and related processes, shedding light on the mechanisms governing C-O bond formation from arenes catalyzed by DDQ.
Collapse
Affiliation(s)
- Xiu-Fang Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People's Republic of China.
| | - Da-Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People's Republic of China.
| | - Li-Jun Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People's Republic of China.
| |
Collapse
|
8
|
Li D, Wang Y. DFT study on isothiourea-catalyzed C-C bond activation of cyclobutenone: the role of the catalyst and the origin of stereoselectivity. Org Biomol Chem 2024; 22:2662-2669. [PMID: 38477235 DOI: 10.1039/d4ob00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The organocatalytic C-C bond activation strategy stands out as a new reaction mode for the release of ring strain and expands the scope of organocatalysts. Thus, disclosing the role of the organocatalyst in the C-C bond cleavage process would be of interest. Here, an isothiourea-catalyzed C-C bond activation/cycloaddition reaction of cyclobutenone is selected as a computational model to uncover the role of the catalyst. Based on the calculations, the electrocyclic cleavage of cyclobutenone is calculated to be energetically more favorable than the isothiourea-catalyzed C-C bond cleavage, which is different from the NHC-catalyzed C-C bond activation of cyclobutenone. The computational results show that the isothiourea promotes the reaction by increasing the nucleophilicity of vinyl ketene and thus lowers the energy barrier of the cycloaddition process. Moreover, NCI and AIM analyses are performed to disclose the origin of stereoselectivity.
Collapse
Affiliation(s)
- Daochang Li
- Department of Chemical and Material Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China.
| | - Yang Wang
- Department of Chemical and Material Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China.
| |
Collapse
|
9
|
Liang P, Yang H, Wang Y. Elucidating the mechanism and origin of stereoselectivity in the activation/transformation of an acetic ester catalyzed by an N-heterocyclic carbene. Phys Chem Chem Phys 2024; 26:4320-4328. [PMID: 38234281 DOI: 10.1039/d3cp05581g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The activation of an ester by N-heterocyclic carbene (NHC) organocatalysis is an efficient and important approach for generating an NHC-bound enolate intermediate, an important active intermediate in the transformation of carbonyl compounds. Herein, we perform a theoretical study on the NHC-catalyzed activation and transformation reaction of an acetic ester in which the NHC-bound enolate intermediate is a key intermediate. Multiple activation and transformation pathways are proposed and analyzed to identify an energetically favorable pathway. The use of different substrates for the reaction is considered. When a chalcone substrate is used, [4+2] cycloaddition between the enolate intermediate and the chalcone is identified to be both the rate- and stereoselectivity-determining step for the reaction, with the R-configured product being generated as the major isomer. Noncovalent interaction (NCI) and atoms-in-molecules (AIM) analyses are performed to identify the origin of the stereoselectivity of the reaction, and a local reactivity analysis is conducted to explore substrate and catalyst effects on the reaction.
Collapse
Affiliation(s)
- Pingxin Liang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China.
| | - Haoran Yang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China.
| | - Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China.
| |
Collapse
|
10
|
Li Y, Zhang M, Zhang Z. Mechanisms and Stereoselectivities in the NHC-Catalyzed [4 + 2] Annulation of 2-Bromoenal and 6-Methyluracil-5-carbaldehyde. J Org Chem 2023; 88:12997-13008. [PMID: 37642149 DOI: 10.1021/acs.joc.3c01015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
To disclose the reaction mechanism and selectivity in the NHC-catalyzed reaction of 2-bromoenal and 6-methyluracil-5-carbaldehyde, a systematic computational study has been performed. According to DFT computations, the catalytic cycle is divided into eight elementary steps: nucleophilic attack of the NHC on 2-bromoenal, 1,2-proton transfer, C-Br bond dissociation, 1,3-proton transfer, addition to 6-methyluracil-5-carbaldehyde, [2 + 2] cycloaddition, NHC dissociation, and decarboxylation. The Bronsted acid DABCO·H+ plays a crucial role in proton transfer and decarboxylation steps. The addition to 6-methyluracil-5-carbaldehyde determines both chemoselectivity and stereoselectivity, leading to R-configured carbocycle-fused uracil, in agreement with experimental results. NCI analysis indicates that the CH···N, CH···π, and LP···π interactions should be the key factor for determining the stereoselectivity. ELF analysis shows the main role of the NHC in promoting C-Br bond dissociation. The mechanistic insights obtained in the present work may guide the rational design of potential NHC catalysts.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Mingchao Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| |
Collapse
|
11
|
Liang PY, Shi S, Xu XX, Zhang HR, Che Z, Lu K, Yan CX, Jin NZ, Zhou PP. Organocatalytic synthesis of chiral allene catalyzed by chiral phosphoric acid via asymmetric 1,8-addition of indole imine methide: Mechanism and origin of enantioselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
He CY, Hou HX, Tong MQ, Zhou DG, Li R. DFT investigates the mechanisms of cross-dehydrogenative coupling between heterocycles and acetonitrile. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People’s Republic of China
| | - Hong-Xia Hou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People’s Republic of China
| | - Ming-Qiong Tong
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou, People’s Republic of China
| | - Da-Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People’s Republic of China
| | - Rong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, People’s Republic of China
| |
Collapse
|
13
|
Theoretical investigation on cobalt-catalyzed hydroacylation reaction: Mechanism and origin of stereoselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
NHC Catalyzed β-Carbon functionalization of carboxylic esters towards formation of δ-Lactams: A mechanistic study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Liu SL, Liu X, Wang Y, Wei D. Unraveling the mechanism and substituent effects on the N-heterocyclic carbene-catalyzed transformation reaction of enals and imines. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Hou HX, Zhou DG, Li R. Mechanisms of bromination between thiophenes and NBS: A DFT investigation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Zhang L, Liu Y, Zhou Y. A Computational Study on Cycloaddition Reactions between Isatin Azomethine Imine and in situ Generated Azaoxyallyl Cation. ChemistrySelect 2022. [DOI: 10.1002/slct.202104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Zhang
- School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Ying Liu
- School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Yongzhu Zhou
- School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
18
|
Zheng XF, Zhou DG. Mechanisms of asymmetric sulfa-Michael additions between phenylacetylene and thiolacetic acid: A DFT investigation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Wang Y, Gong K, Zhang H, Liu Y, Wei D. Mechanism of a cobalt-catalyzed hydroarylation reaction and origin of stereoselectivity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the present study, the mechanism of a cobalt-catalyzed hydroarylation reaction between N-pyridylindole and 1,6-enynes and the origin of its stereoselectivity have been systematically investigated using the DFT calculation method.
Collapse
Affiliation(s)
- Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Kaili Gong
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Han Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Yue Liu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Donghui Wei
- College of Chemistry (Center of Green Catalysis), Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, PR China
| |
Collapse
|
20
|
Abstract
An efficient construction of amides through NHC-mediated oxidation of imines is described. This work has the advantages of wide scope, fast assembly and high yield, and can avoid the use of coupling agents, such as HATU, DCC, etc.
Collapse
Affiliation(s)
- Shaofa Sun
- College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Hubei, 437100, China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Fangyi Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| | - Jian Wang
- College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Hubei, 437100, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
21
|
Luo J, Han LL, Chen K, Song J, Wei D. A DFT study on the mechanism and regioselectivity of NHC-catalyzed double acylation of aromatic 1,2-diketones with α,β-unsaturated ketones. NEW J CHEM 2022. [DOI: 10.1039/d2nj03147g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possible mechanisms and the origin of regioselectivity of the N-heterocyclic carbene (NHC)-catalyzed double acylation reaction of aromatic 1,2-diketones with α,β-unsaturated ketones have been theoretically studied using density functional theory.
Collapse
Affiliation(s)
- Jing Luo
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Li-Li Han
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Kuohong Chen
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Jinshuai Song
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Donghui Wei
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| |
Collapse
|
22
|
Li Y, Geng L, Song Z, Zhang Z. A DFT study of NHC-catalyzed reactions between 2-bromo-2-enals and acylhydrazones: mechanisms, and chemo- and stereoselectivities. NEW J CHEM 2022. [DOI: 10.1039/d2nj01078j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The reaction mechanisms and origins of the chemo- and stereoselectivities of NHC-catalyzed [4 + 2] annulation of 2-bromo-2-enals and acylhydrazones.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China
| | - Lina Geng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China
| | - Zhiyi Song
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China
| |
Collapse
|
23
|
Zhou P, Zhou D. Mechanisms of Diels‐Alder reactions between pyridines and dienophiles: A DFT investigation. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pan‐Pan Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering China West Normal University Nanchong China
| | - Da‐Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering China West Normal University Nanchong China
| |
Collapse
|
24
|
Liang PY, Dai Y, Lu K, Yan CX, Liu Y, Zhou PP, Yang Z. DABCO-mediated [4 + 4]-domino annulation reactions of ynones and α-cyano-α,β-unsaturated ketones: Mechanisms and the role of DABCO. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Hou Q, Zhou D. Mechanisms of Ssp
3
–H functionalization of thiolacetic acid: A density functional theory investigation. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qian‐Mei Hou
- Neurology Department Affiliated Hospital of North Sichuan Medical College Nanchong China
| | - Da‐Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Synthesis and Application of Functional Materials, College of Chemistry and Chemical Engineering China West Normal University Nanchong China
| |
Collapse
|
26
|
Zhang QY, Li SJ, Wang Y, Song J, Lan Y, Wei D. Insights into the chiral sulfide/selenide-catalyzed electrophilic carbothiolation of alkynes: mechanism and origin of axial chirality. Org Chem Front 2021. [DOI: 10.1039/d1qo00036e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The FMO overlap mode, ELF, and AIM analyses along the formation process of thiiranium ion intermediate have been performed for the first time to explore the nature of the electronic structural changes and origin of stereoselectivity.
Collapse
Affiliation(s)
- Qiao-Yu Zhang
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Shi-Jun Li
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yang Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P.R. China
| | - Jinshuai Song
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yu Lan
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Donghui Wei
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
27
|
Wang Y, Liu Y, Gong K, Zhang H, Lan Y, Wei D. Theoretical study of the NHC-catalyzed C–S bond cleavage and reconstruction reaction: mechanism, stereoselectivity, and role of catalysts. Org Chem Front 2021. [DOI: 10.1039/d1qo00706h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanism of the NHC-catalyzed C–S bond activation reaction has been theoretically studied and ELF analysis along with IRC results shows that the NHC promotes the cleavage of the C–S bond via an SN2 process.
Collapse
Affiliation(s)
- Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China
| | - Yue Liu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China
| | - Kaili Gong
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China
| | - Han Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China
| | - Yu Lan
- College of Chemistry (Center of Green Catalysis), Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China
| | - Donghui Wei
- College of Chemistry (Center of Green Catalysis), Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, P. R. China
| |
Collapse
|