1
|
Aleksanyan M, Sayunts A, Shahkhatuni G, Simonyan Z, Kasparyan H, Kopecký D. Room Temperature Detection of Hydrogen Peroxide Vapor by Fe 2O 3:ZnO Nanograins. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010120. [PMID: 36616029 PMCID: PMC9824716 DOI: 10.3390/nano13010120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 05/28/2023]
Abstract
In this report, a Fe2O3:ZnO sputtering target and a nanograins-based sensor were developed for the room temperature (RT) detection of hydrogen peroxide vapor (HPV) using the solid-state reaction method and the radio frequency (RF) magnetron sputtering technique, respectively. The characterization of the synthesized sputtering target and the obtained nanostructured film was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) analyses. The SEM and TEM images of the film revealed its homogeneous granular structure, with a grain size of 10-30 nm and an interplanar spacing of Fe2O3 and ZnO, respectively. EDX spectroscopy presented the real concentrations of Zn in the target material and in the film (21.2 wt.% and 19.4 wt.%, respectively), with a uniform distribution of O, Al, Zn, and Fe elements in the e-mapped images of the Fe2O3:ZnO film. The gas sensing behavior was investigated in the temperature range of 25-250 °C with regards to the 1.5-56 ppm HPV concentrations, with and without ultraviolet (UV) irradiation. The presence of UV light on the Fe2O3:ZnO surface at RT reduced a low detection limit from 3 ppm to 1.5 ppm, which corresponded to a response value of 12, with the sensor's response and recovery times of 91 s and 482 s, respectively. The obtained promising results are attributed to the improved characteristics of the Fe2O3:ZnO composite material, which will enable its use in multifunctional sensor systems and medical diagnostic devices.
Collapse
Affiliation(s)
- Mikayel Aleksanyan
- Center of Semiconductor Devices and Nanotechnologies, Yerevan State University, Yerevan 0025, Armenia
| | - Artak Sayunts
- Center of Semiconductor Devices and Nanotechnologies, Yerevan State University, Yerevan 0025, Armenia
| | - Gevorg Shahkhatuni
- Center of Semiconductor Devices and Nanotechnologies, Yerevan State University, Yerevan 0025, Armenia
| | - Zarine Simonyan
- Center of Semiconductor Devices and Nanotechnologies, Yerevan State University, Yerevan 0025, Armenia
| | - Hayk Kasparyan
- Department of Computer and Control Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Dušan Kopecký
- Department of Computer and Control Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| |
Collapse
|
2
|
Quasim Khan M, Alharthi FA, Ahmad K, Kim H. Hydrothermal synthesis of BaTiO3 perovskite for H2O2 sensing. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Ahmad K, Kim H. Fabrication of Nitrogen-Doped Reduced Graphene Oxide Modified Screen Printed Carbon Electrode (N-rGO/SPCE) as Hydrogen Peroxide Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2443. [PMID: 35889667 PMCID: PMC9324769 DOI: 10.3390/nano12142443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022]
Abstract
In recent years, the electrochemical sensing approach has attracted electrochemists because of its excellent detection process, simplicity, high sensitivity, cost-effectiveness, and high selectivity. In this study, we prepared nitrogen doped reduced graphene oxide (N-rGO) and characterized it using various advanced techniques such as XRD, SEM, EDX, Raman, and XPS. Furthermore, we modified the active surface of a screen printed carbon electrode (SPCE) via the drop-casting of N-rGO. This modified electrode (N-rGO/SPCE) exhibited an excellent detection limit (LOD) of 0.83 µM with a decent sensitivity of 4.34 µAµM-1cm-2 for the detection of hydrogen peroxide (H2O2). In addition, N-rGO/SPCE also showed excellent selectivity, repeatability, and stability for the sensing of H2O2. Real sample investigations were also carried out that showed decent recovery.
Collapse
Affiliation(s)
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
4
|
Shukla SK. Century Impact of Macromolecules for Advances of Sensing Sciences. CHEMISTRY AFRICA 2022. [PMCID: PMC8995417 DOI: 10.1007/s42250-022-00357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Impact of macro molecular theory on the progress of sensing sciences and technology has been presented in the light of materials developments, advances in physical and chemical properties. The chronological advances in the properties of macromolecules have significantly improved the sensing performances towards gases, heavy metals, biomolecules, hydrocarbon, and energetic compounds in terms of unexplored sensing parameters, durability, and working lifetime. In this review article, efforts have been made to correlate the advances in structure and interactivity of macro-molecules with their sensing behavior and working performances. The significant findings on the macromolecules towards advancing the sensing sciences are highlighted with the suitable illustration and schemes to establish it as a potential “microanalytical technique” along with existing challenges.
Collapse
|
5
|
NiO-nanoflowers decorating a plastic electrode for the non-enzymatic amperometric detection of H2O2 in milk: Old issue, new challenge. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Chakraborty P, Ahamed ST, Mandal P, Mondal A, Banerjee D. Polypyrrole and a polypyrrole/nickel oxide composite – single-walled carbon nanotube enhanced photocatalytic activity under visible light. NEW J CHEM 2022. [DOI: 10.1039/d2nj02336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel NiO/PPy/SWCNT composite for removal of organic dyes with an emphasis on the effect of photocatalytic charge carrier transport and photoluminescence properties.
Collapse
Affiliation(s)
- Prasenjit Chakraborty
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Sk. Taheruddin Ahamed
- Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Pinaki Mandal
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Anup Mondal
- Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Dipali Banerjee
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| |
Collapse
|
7
|
Singh N, Chand S, Taunk M. Facile in-situ synthesis, microstructural, morphological and electrical transport properties of polypyrrole-cuprous iodide hybrid nanocomposites. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Kushwaha CS, Singh VK, Shukla SK. Electrochemically triggered sensing and recovery of mercury over sodium alginate grafted polyaniline. NEW J CHEM 2021. [DOI: 10.1039/d1nj01103k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient potential triggering process has been established over chemically functionalized SA-g-PANI under optimum conditions to enable the sensing and extraction of residual mercury ions present in wastewater and soil samples.
Collapse
Affiliation(s)
- Chandra Shekhar Kushwaha
- Department of Polymer Science
- Bhaskaracharya College of Applied Sciences
- University of Delhi
- Delhi-110075
- India
| | - Vinay Kr Singh
- Department of Chemistry
- Sri Aurobindo College
- University of Delhi
- Delhi-110017
- India
| | - Saroj Kr Shukla
- Department of Polymer Science
- Bhaskaracharya College of Applied Sciences
- University of Delhi
- Delhi-110075
- India
| |
Collapse
|
9
|
Tian F, Zhang Y, Liu L, Zhang Y, Shi Q, Zhao Q, Cheng Y, Zhou C, Yang S, Song X. Spongy p-Toluenesulfonic Acid-doped Polypyrrole with Extraordinary Rate Performance as Durable Anodes of Sodium-Ion Batteries at Different Temperatures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15075-15081. [PMID: 33275437 DOI: 10.1021/acs.langmuir.0c02625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sodium-ion batteries (SIBs) have potential as an energy storage system because they have similar electrochemical properties as lithium-ion batteries, abundant resource reserves, and extremely high safety performance. Compared with traditional graphite materials, conductive polymers are more suitable as an anode electrode material for SIBs. In this study, a simple and scalable approach has been used to synthesize p-toluenesulfonic acid-doped polypyrrole (p-TSA-PPy). The as-obtained material showed remarkable rate capacities and cyclability. At room temperature (25 °C), its discharge capacities could reach 185, 162, and 135 mAh g-1 under 10, 30, and 50 C rates after 250 cycles, respectively. More importantly, the capacity of the p-TSA-PPy could still be maintained at 120.5 mAh g-1 even at the 2000th cycle at 10 C. In addition, it achieves attractive electrochemical performance at different temperatures (0 and 50 °C).
Collapse
Affiliation(s)
- Fanghua Tian
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanjun Zhang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Liu
- College of Chemistry, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, Xiangtan University, Xiangtan 411105, China
| | - Yin Zhang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Shi
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qizhong Zhao
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yangqin Cheng
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chao Zhou
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sen Yang
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoping Song
- School of Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|