1
|
Song YP, Di YM, Zhang SQ, Lin MJ. Panchromatic Donor-Acceptor Hybrid Materials for Near-Infrared-Activatable Photocatalytic Detoxification of Mustard Gas Simulants. Inorg Chem 2025. [PMID: 40293162 DOI: 10.1021/acs.inorgchem.5c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Crystalline donor-acceptor (D-A) hybrid materials show a significant potential for photocatalytic applications, but achieving broad light absorption and high photocatalytic efficiency remains a challenge. To address this issue, herein, heteropoly blues, as electron donors, and N,N'-bis(N,N-dimethylaminoethyl)-1,4,5,8-naphthalenediimide (NDIDMA), as electron acceptors, have been introduced to these D-A hybrid materials to enhance their light-harvesting and photocatalytic capabilities. Consequently, heteropoly blue/naphthalenediimide D-A hybrid materials H2NDIDMA·[H5PMo8VIMo4VO40]·2DMF (1) have been synthesized. For comparison, the isostructural fully oxidized polyoxometalate-containing counterpart, H2NDIDMA·HPW12O40·2DMF (2), has also been prepared. As expected, hybrid 1 exhibited a broad light absorption range (300-2500 nm) and demonstrated superior photocatalytic decontamination abilities against mustard gas simulants under full-spectrum and near-infrared (NIR) light irradiation compared to hybrid 2. Remarkably, the heteropoly blues in hybrid 1 demonstrated high stability under catalytic conditions and in ambient environments. Additionally, these stable hybrids exhibited excellent recyclability without a loss of activity after five cycles.
Collapse
Affiliation(s)
- Yu-Ping Song
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi-Ming Di
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou 350002, China
| | - Mei-Jin Lin
- Key Laboratory of Advanced Carbon-Based Functional Materials (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
2
|
He C, Dai W, Zhao Y, Liu JJ. Heterogeneous photocatalytic organic transformation using crystalline naphthalenediimide/perylenediimide-based hybrid materials. Dalton Trans 2024; 54:15-37. [PMID: 39584571 DOI: 10.1039/d4dt02350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The use of light energy to drive photocatalytic organic transformations for the production of high-value-added organic compounds has garnered growing interest as a sustainable strategy for solving environmental problems and addressing the energy crisis. Naphthalenediimide (NDI) and perylenediimide (PDI)-based hybrid materials are highly regarded photocatalysts due to their strong visible-light absorption properties, highly electron-deficient aromatic cores, excellent redox activity, and tunable electrochemical and photochemical properties. However, although the design and preparation of NDI/PDI-based hybrid materials have progressed in the past few years, their application in photocatalytic organic reactions remains in the initial stage. This review highlights the recent research progress in NDI/PDI-based hybrid materials and their crystalline composites for photocatalytic organic transformations. In particular, the synthetic methods, structures, photochemical properties, and catalytic performance of NDI/PDI-based hybrid photocatalysts are illustrated to provide useful guidance for the further development and application of these materials.
Collapse
Affiliation(s)
- Chixian He
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Weijun Dai
- School of Ethnic Medicine, Yunnan Minzu University, Kunmin 650504, China
| | - Yuxiang Zhao
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jian-Jun Liu
- Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
3
|
Zhao JL, Yang ZY, Xu YQ, Cao ZY, Liu JX, Li MH. Series of Viologen-Based Metal-Organic Polyhedra with Photo/Electrochromic Behavior for Inkless Printing and UV Detection. Inorg Chem 2024; 63:6692-6700. [PMID: 38573894 DOI: 10.1021/acs.inorgchem.3c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The fabrication of molecular crystalline materials with fast, multistimuli-responsive behavior and the construction of the corresponding structure-activity relationship are of extraordinary significance for the development of smart materials. In this context, three multistimuli-responsive functional metal-organic polyhedra (MOP), {[Dy2(bcbp)3(NO3)1.5(H2O)7]·Cl4.2·(NO3)0.3·H2O}n (1), {[Dy2(bcbp)4(H2O)8]Cl6}n (2), and {[Eu2(bcbp)4(H2O)10]Cl6·H2O}n (3; bcbp = 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium), were successfully prepared and characterized. All of the compounds exhibit rapid and reversible photochromic and electrochromic dual-responsive behaviors. Furthermore, benefiting from the well-defined crystal structure and different responsive behaviors, the photoinduced electron transfer (PIET) process and structure-activity relationship were explored. In addition, considering the excellent photochromic performance, function filter paper and smart organic glass were successfully prepared and used for ink-free printing and UV light detection.
Collapse
Affiliation(s)
- Jia-Li Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475001, China
| | - Zi-Yu Yang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475001, China
| | - Yuan-Qing Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475001, China
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475001, China
| | - Jun-Xia Liu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475001, China
| | - Meng-Hua Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
4
|
Liu JY, Zhang XH, Fang H, Zhang SQ, Chen Y, Liao Q, Chen HM, Chen HP, Lin MJ. Novel Semiconductive Ternary Hybrid Heterostructures for Artificial Optoelectronic Synapses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302197. [PMID: 37403302 DOI: 10.1002/smll.202302197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Synaptic devices that mimic biological synapses are considered as promising candidates for brain-inspired devices, offering the functionalities in neuromorphic computing. However, modulation of emerging optoelectronic synaptic devices has rarely been reported. Herein, a semiconductive ternary hybrid heterostructure is prepared with a D-D'-A configuration by introducing polyoxometalate (POM) as an additional electroactive donor (D') into a metalloviologen-based D-A framework. The obtained material features an unprecedented porous 8-connected bcu-net that accommodates nanoscale [α-SiW12 O40 ]4- counterions, displaying uncommon optoelectronic responses. Besides, the fabricated synaptic device based on this material can achieve dual-modulation of synaptic plasticity due to the synergetic effect of electron reservoir POM and photoinduced electron transfer. And it can successfully simulate learning and memory processes similar to those in biological systems. The result provides a facile and effective strategy to customize multi-modality artificial synapses in the field of crystal engineering, which opens a new direction for developing high-performance neuromorphic devices.
Collapse
Affiliation(s)
- Jing-Yan Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiang-Hong Zhang
- Institure of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Hua Fang
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yong Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qing Liao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hong-Ming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hui-Peng Chen
- Institure of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
5
|
Lu Q, Ying J, Tian A, Wang X. A Series of POM-Viologen Photo-/Electrochromic Hybrids and Hydrogels Acting as Multifunctional Sensors for Detecting UV, Hg 2+, and Organic Amines. Inorg Chem 2023; 62:16617-16626. [PMID: 37769325 DOI: 10.1021/acs.inorgchem.3c02743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
In this work, POM anions were introduced into the viologen system in order to synthesize POM-viologen hybrid compounds with excellent properties. Three new POM-viologen compounds, {CdII(tybipy)(DMF)2[β-Mo8O26]0.5Cl} (1), {CoII(tybipy)2(DMF)2[H2(β-Mo8O26)]2}·4C2H7N (2), and (tybipy)4·(β-Mo8O26) (3) (tybipy·Br = 1-thiophen-3-ylmethyl-[4,4']bipyridinyl-1-ium bromide), have been prepared by a solvothermal method, and their structures were characterized. POM anions are modified by mixing organic ligands with transition metals in compounds 1 and 2. However, compound 3 is a supramolecular structure constructed by hydrogen bonding interactions between the dissociative viologen and POM anions. These three compounds have rapid photoresponse and photochromic ability, which can be made into mixed matrix membranes and hydrogels for UV detection. The rigid sandwich devices prepared by compounds 1-3 have achieved ultrafast electrochromism and recovery. In addition, photochromic hydrogels based on compounds 1-3 can achieve ultrafast photochromic recovery. Compounds 1-3 can be used in ink-free printing and Hg2+ fluorescence detecting. Compounds 1 and 2 can also be used as organic amine detectors. Combined with photochromism and fluorescence detection of Hg2+, visual test papers for Hg2+, Cu2+, and Co2+ were successfully realized, which can improve the portability and detection speed of heavy metal ions in the actual environment.
Collapse
Affiliation(s)
- Qinghai Lu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
6
|
Zhao JL, Li MH, Cheng YM, Zhao XW, Xu Y, Cao ZY, You MH, Lin MJ. Photochromic crystalline hybrid materials with switchable properties: Recent advances and potential applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Liu Z, Li X, Yin W, Chen J, Li C, Cheng F, Liu JJ. Perylenediimide-Based Hybrid Materials for the Iodoperfluoroalkylation of Alkenes and Oxidative Coupling of Amines: Bay-Substituent-Mediated Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53090-53100. [PMID: 36383738 DOI: 10.1021/acsami.2c17197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inorganic-organic donor-acceptor hybrid compounds are an emerging class of multifunctional crystalline materials with well-defined structures built from semiconductive inorganic and organic components. Perylenediimides (PDIs) are a prominent class of electron-deficient organic dyes, which can undergo consecutive photoinduced electron transfers to generate doublet excited-state radical anions for photoredox-inert chemical bonds. Thus, this is an excellent organic component for building hybrid materials to study the structure-property relationships in organic synthesis. In this context, three molecular structure modified PDI-based hybrid materials, (Me4-PDI)2·SiW12O40 (1), (Me4-Cl4-PDI)2·SiW12O40 (2), and (Me4-Br2-PDI)1.5·HSiW12O40 (3), were studied. By the introduction of different substituent groups at the bay positions, these three hybrid materials were successfully fabricated to investigate the impact of substituent groups on the photocatalytic activity. As expected, all PDI-based hybrid materials easily underwent consecutive photoexcitation to obtain their excited-state radical anions. However, experimental and theoretical analyses showed that these obtained excited-state radical anions displayed unusual bay-substituent-group-dependent photocatalytic conversion activities for the iodoperfluoroalkylation of alkenes and oxidative coupling of amines. Higher conversion yields were obtained for complexes 1 and 3 (bay-unsubstituted and Br-substituted PDI hybrid materials, respectively), and lower conversion was observed for complex 2 (Cl-substituted PDI hybrid material), which is attributed to the excited-state SOMO-1 energies of the PDI radical anions. The structure-property relationship established in this work provides insights for the further exploration of bay-substituted PDI hybrid materials in other small-molecule photocatalytic transformations.
Collapse
Affiliation(s)
- Zhengfen Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Xiaobo Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Wenxiu Yin
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jian Chen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Chao Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Feixiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
8
|
Di YM, Liu JY, Li MH, Zhang SQ, You MH, Lin MJ. Donor-Acceptor Hybrid Heterostructures: An Emerging Class of Photoactive Materials with Inorganic and Organic Semiconductive Components. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201159. [PMID: 35589558 DOI: 10.1002/smll.202201159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Just as the heterojunctions in physics, donor-acceptor (D-A) heterostructures are an emerging class of photoactive materials fabricated from two semiconductive components at the molecular level. Among them, D-A hybrid heterostructures from organic and inorganic semiconductive components have attracted extensive attention in the past decades due to their combined advantages of high stability for the inorganic semiconductors and modifiability for the organic semiconductors, which are particularly beneficial to efficiently achieve photoinduced charge separation and transfer upon irradiations. In this review, by analogy with the heterojunctions in physics, a definition of the D-A heterostructures and their general design and synthetic strategies are given. Meanwhile, the D-A hybrid heterostructures are focused on and their recent advances in potential applications of photochromism, photomodulated luminescence, and photocatalysis summarized.
Collapse
Affiliation(s)
- Yi-Ming Di
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jing-Yan Liu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Meng-Hua Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou, 350002, China
| | - Ming-Hua You
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, China
| | - Mei-Jin Lin
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
9
|
Ghafouri M, Ghahramani Azad A, Bidadi S, Zeinalvand Farzin B. Preparation of redispersed WO 3 nanoparticles in N-methyl-2-pyrrolidone by ethylene glycol as a dispersing agent. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammad Ghafouri
- Shabestar Branch, Faculty of science, Department of Physics, Islamic Azad University, Shabestar, East Azerbaijan, Iran
| | - Aysa Ghahramani Azad
- Faculty of Physics, Department of Condensed Matter Physics, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Samra Bidadi
- Faculty of Agriculture, Department of Water Engineering, University of Tabriz, Tabriz, East Azerbaijan, Iran
| | - Behnam Zeinalvand Farzin
- Faculty of Physics, Department of Condensed Matter Physics, University of Tabriz, Tabriz, East Azerbaijan, Iran
| |
Collapse
|
10
|
Ying J, Jin L, Sun CX, Tian AX, Wang XL. A Series of Polyoxometalate-Viologen Photochromic Materials for UV Probing, Amine Detecting and Inkless and Erasable Printing. Chemistry 2021; 28:e202103268. [PMID: 34791731 DOI: 10.1002/chem.202103268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/20/2022]
Abstract
In this work, by using two kinds of viologen ligands three POM-based Compounds were obtained under hydrothermal conditions, namely [AgI (bmypd)0.5 (β-Mo8 O26 )0.5 ] (1) (bmypd ⋅ 2Cl=1,1'-[Biphenyl-4,4'-bis(methylene)]bis(4,4'-bipyridyinium)dichloride), [AgI 2 (bypy)4 (HSiW12 O40 )2 ] ⋅ 14H2 O (2) and [AgI (bypy)(γ-Mo8 O26 )0.5 ] (3) (bypy⋅Cl=1-Benzyl-4,4'-bipyridyinium chloride). The structures were characterized by Fourier transform infrared spectroscopy (FT-IR), Powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single crystal X-ray diffraction. Compounds 1-3 show excellent photochromic ability with fast photoresponse under the irradiation of ultraviolet light with different degrees of color changes. So compounds 1-3 can be used as visible ultraviolet detectors. Compounds 1-3 also possess photoluminescence properties with fast and excellent fluorescence quenching effect. Compounds 1-3 also can be used as inkless and erasable printing materials with suspensions of 1-3 applied to filter paper. Compounds 1-3 can also produce color changes in amine vapor environment, especially in an NH3 atmosphere. Compounds 1-3 can be used as organic amine detectors.
Collapse
Affiliation(s)
- Jun Ying
- Department of College of Chemistry and Materials Engineering, University of Bohai, Jinzhou, 121013, P. R. China
| | - Liang Jin
- Department of College of Chemistry and Materials Engineering, University of Bohai, Jinzhou, 121013, P. R. China
| | - Chen-Xi Sun
- Department of College of Chemistry and Materials Engineering, University of Bohai, Jinzhou, 121013, P. R. China
| | - Ai-Xiang Tian
- Department of College of Chemistry and Materials Engineering, University of Bohai, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- Department of College of Chemistry and Materials Engineering, University of Bohai, Jinzhou, 121013, P. R. China
| |
Collapse
|
11
|
Di YM, Li MH, You MH, Zhang SQ, Lin MJ. Photochromic and Room Temperature Phosphorescent Donor-Acceptor Hybrid Crystals Regulated by Core-Substituted Naphthalenediimides. Inorg Chem 2021; 60:16233-16240. [PMID: 34648276 DOI: 10.1021/acs.inorgchem.1c02020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Donor-acceptor (D-A) hybrid crystals are an emerging kind of crystalline hybrid material composed of semiconductive inorganic donors and organic acceptors. Except for the intrinsic photochromism, recently we have reported that the anion-π polyoxometalate (POM)/naphthalenediimide (NDI) hybrid crystals could produce an interesting room temperature phosphorescence (RTP) quantum yield up to 7.2%. Herein, we extended into core-substituted NDIs and anticipated the regulation of their photochromic and RTP properties. Thus, two hybrid crystals, namely (H4BDMPy-Br2NDI)·(NMP)4·(HPW12O40) (1) and (H4BDMPy-I2NDI)·(HPW12O40) (2) (H2BDMPy-Br2NDI: N,N'-bis(3,5-dimethylpyrazolyl)-2,6-dibromo-1,4,5,8-naphthalenediimide and H2BDMPy-I2NDI: N,N'-bis(3,5-dimethylpyrazolyl)-2,6-diiodide-1,4,5,8-naphthalenediimide), have been synthesized from phosphotungstic anions (PW12O403-) and Br or I core-substituted NDIs. Compared to the core-unsubstituted analogues (H4BDMPy-NDI)·(NMP)4·(HPW12O40) (3), 2 with photosensitive iodine substituents is more sensitive to light, which can become discolored under natural light. As a result of the heavy-atom effect, hybrid 1 exhibits remarkable RTP with the quantum yield up to 10.2% and a lifetime of 1.14 ms.
Collapse
Affiliation(s)
- Yi-Ming Di
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ming-Hua You
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou 350002, China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.,College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
12
|
Li MH, You MH, Lin MJ. Photochromism and photomagnetism in three cyano-bridged 3d-4f heterobimetallic viologen frameworks. Dalton Trans 2021; 50:4959-4966. [PMID: 33877194 DOI: 10.1039/d0dt04358c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The incorporation of photochromic moieties into coordination polymers is of particular interest because it can endow them with various switching functions such as electrical conductivity, luminescence, and magnetism. In this context, a viologen ligand as a photochromic moiety was incorporated into 3d-4f heterobimetallic hexacyanoferrates, resulting in three novel 3-D photochromic complexes with different metal cations, namely {[Ln(BCEbpy) M(CN)6 (H2O)4]·2H2O}n (denoted as CoDy, CoEu, and FeDy, Ln = Dy, Eu; M = Fe, Co, H2BCEbpy·2Br = N,N'-bis(carboxymethyl)-4,4'-bipyridinium dibromide). And the photoresponsive mechanism has been well discussed based on the solid UV-vis, IR, ESR, photoluminescence, and magnetism data. Moreover, accompanying the photochromic process, these unique complexes exhibit different photomagnetic behaviors upon UV-vis irradiation at RT because of the different ferromagnetic coupling interactions between photogenerated radicals and lanthanide cations.
Collapse
Affiliation(s)
- Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, China350116.
| | | | | |
Collapse
|
13
|
A series of POM-based compounds constructed by piperazine and morpholine derivatives: Characterization, selective photocatalytic and electrochemical/fluorescence sensing properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|