1
|
Tang L, Chang X, Shi J, Wen Z, Bi C, Liu W. More than just DNA damage: Pt(ΙΙ)-NHC complexes derived from 4,5-diarylimidazoles augment immunogenic cell death. Eur J Med Chem 2025; 282:117014. [PMID: 39566241 DOI: 10.1016/j.ejmech.2024.117014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
Platinum-based drugs are a mainstay in chemotherapy, with traditional forms exerting their work directly on DNA. In recent years, it has been observed that platinum complexes had the potential to induce immunogenic cell death (ICD) and effectively trigger antitumor immune responses. Herein, to obtain novel platinum complexes with chemo-immunological properties, a series of Pt(ΙΙ)-N-heterocyclic carbene (Pt(ΙΙ)-NHC) complexes derived from 4,5-diarylimidazoles were synthesized. Among them, the dominant complex 3f was proved to exhibit better anti-liver cancer capacity compared to cisplatin and oxaliplatin. Complex 3f showed the ability to cause DNA damage by binding to DNA. In addition, it triggered intracellular reactive oxygen species (ROS) generation, affected the function of mitochondria, and blocked cells in G0/G1 phase, ultimately induced apoptosis in liver cancer cells. Furthermore, complex 3f activated endoplasmic reticulum stress (ERS) which promoted the release of damage-associated molecular patterns (DAMPs), induced ICD and dendritic cells (DCs) maturation. Interestingly, complex 3f also upregulated PD-L1, consequently converted "cold tumors" into "hot tumors". Overall, complex 3f had the potential to be regarded as a promising chemoimmunotherapy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Lu Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Wuhe Center for Disease Control and Prevention, Bengbu, 233300, China
| | - Jing Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunyang Bi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Maciel-Flores CE, Lozano-Alvarez JA, Bivián-Castro EY. Recently Reported Biological Activities and Action Targets of Pt(II)- and Cu(II)-Based Complexes. Molecules 2024; 29:1066. [PMID: 38474580 DOI: 10.3390/molecules29051066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Most diseases that affect human beings across the world are now treated with drugs of organic origin. However, some of these are associated with side effects, toxicity, and resistance phenomena. For the treatment of many illnesses, the development of new molecules with pharmacological potential is now an urgent matter. The biological activities of metal complexes have been reported to have antitumor, antimicrobial, anti-inflammatory, anti-infective and antiparasitic effects, amongst others. Metal complexes are effective because they possess unique properties. For example, the complex entity possesses the effective biological activity, then the formation of coordination bonds between the metal ions and ligands is controlled, metal ions provide it with extraordinary mechanisms of action because of characteristics such as d-orbitals, oxidation states, and specific orientations; metal complexes also exhibit good stability and good physicochemical properties such as water solubility. Platinum is a transition metal widely used in the design of drugs with antineoplastic activities; however, platinum is associated with side effects which have made it necessary to search for, and design, novel complexes based on other metals. Copper is a biometal which is found in living systems; it is now used in the design of metal complexes with biological activities that have demonstrated antitumoral, antimicrobial and anti-inflammatory effects, amongst others. In this review, we consider the open horizons of Cu(II)- and Pt(II)-based complexes, new trends in their design, their synthesis, their biological activities and their targets of action.
Collapse
Affiliation(s)
- Cristhian Eduardo Maciel-Flores
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
| | - Juan Antonio Lozano-Alvarez
- Departamento de Ingeniería Bioquímica, Universidad Autónoma de Aguascalientes, Av. Universidad 940 Cd. Universitaria, Aguascalientes 20131, Aguascalientes, Mexico
| | - Egla Yareth Bivián-Castro
- Centro Universitario de los Lagos, Universidad de Guadalajara, Av. Enrique Díaz de León 1144, Col. Paseos de la Montaña, Lagos de Moreno 47460, Jalisco, Mexico
| |
Collapse
|
3
|
Cai L, Wang Y, Chen H, Tan Y, Yang T, Zhang S, Guo Z, Wang X. Platinum(IV) Complexes as Inhibitors of STAT3 and Regulators of the Tumor Microenvironment To Control Breast Cancer. J Med Chem 2023; 66:11351-11364. [PMID: 37578941 DOI: 10.1021/acs.jmedchem.3c00836] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Interplay between breast cancer (BC) cells and the tumor microenvironment (TME) influences the outcome of cancer treatment. Aberrant activation of signal transducer and activator of transcription 3 (STAT3) promotes the interaction and causes immunosuppression and drug resistance. Platinum(IV) complexes SPP and DPP bearing pterostilbene-derived axial ligand(s) were synthesized to inhibit the JAK2-STAT3 pathway in BC cells and regulate the TME. These complexes exerted remarkable antiproliferative activity against the triple-negative BC cells, suppressed the expression of phosphorylated STAT3 and STAT3-related cyclooxygenase-2 and IL-6, and activated caspase-3 and cleaved poly ADP-ribose polymerase, preventing the repair of DNA lesions and inducing apoptosis. Furthermore, DPP promoted the maturation and antigen presentation of dendritic cells, repressed the proliferation and differentiation of myeloid-derived suppressor cells and regulatory T cells, and facilitated the expansion of T cells. As a consequence, DPP showed excellent anticancer activity against BC with almost no general toxicity in vivo as a potential chemoimmunotherapeutic agent.
Collapse
Affiliation(s)
- Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yehong Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Cai L, Wang Y, Chen Y, Chen H, Yang T, Zhang S, Guo Z, Wang X. Manganese(ii) complexes stimulate antitumor immunity via aggravating DNA damage and activating the cGAS-STING pathway. Chem Sci 2023; 14:4375-4389. [PMID: 37123182 PMCID: PMC10132258 DOI: 10.1039/d2sc06036a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Activating the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway is a promising immunotherapeutic strategy for cancer treatment. Manganese(ii) complexes MnPC and MnPVA (P = 1,10-phenanthroline, C = chlorine, and VA = valproic acid) were found to activate the cGAS-STING pathway. The complexes not only damaged DNA, but also inhibited histone deacetylases (HDACs) and poly adenosine diphosphate-ribose polymerase (PARP) to impede the repair of DNA damage, thereby promoting the leakage of DNA fragments into cytoplasm. The DNA fragments activated the cGAS-STING pathway, which initiated an innate immune response and a two-way communication between tumor cells and neighboring immune cells. The activated cGAS-STING further increased the production of type I interferons and secretion of pro-inflammatory cytokines (TNF-α and IL-6), boosting the tumor infiltration of dendritic cells and macrophages, as well as stimulating cytotoxic T cells to kill cancer cells in vitro and in vivo. Owing to the enhanced DNA-damaging ability, MnPC and MnPVA showed more potent immunocompetence and antitumor activity than Mn2+ ions, thus demonstrating great potential as chemoimmunotherapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Yayu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| |
Collapse
|
5
|
Redrado M, Fernández‐Moreira V. The Role of Metallodrugs in Cellular Senescence. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202200593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marta Redrado
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Vanesa Fernández‐Moreira
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
6
|
Wang X, Zhang H, Wang Y, Wang Y, Han Q, Yan H, Yang T, Guo Z. Platinum Complexes as Inhibitors of DNA Repair Protein Ku70 and Topoisomerase IIα in Cancer Cells. Dalton Trans 2022; 51:3188-3197. [DOI: 10.1039/d1dt03700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ku70 protein and topoisomerase IIα (Topo IIα) are promising targets of anticancer drugs, which play critical roles in DNA repair and replication processes. Three platinum(II) complexes, [PtCl(NH3)2(9-(pyridin-2-ylmethyl)-9H-carbazole)]NO3 (OPPC), [PtCl(NH3)2(9-(pyridin-3-ylmethyl)-9H-carbazole)]NO3 (MPPC),...
Collapse
|
7
|
Peng K, Liang BB, Liu W, Mao ZW. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|