1
|
Hu Z, Xiao Z, Wei W, Yang J, Huang X, Lu Q, Chandrasekaran S, Lu H, Liu Y. Ru doping and interface engineering synergistically boost the electrocatalytic performance of a WP/WP 2 nanosheet array for an efficient hydrogen evolution reaction. NANOSCALE 2024; 16:12492-12501. [PMID: 38888749 DOI: 10.1039/d4nr01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The surface electronic structure and morphology of catalysts have a crucial impact on the electrocatalytic hydrogen evolution reaction performance. This work reports on the fabrication of a Ru-doped WP/WP2 heterojunction nanosheet array electrode via a one-step phosphating treatment of a Ru-doped WO3 precursor. Benefitting from the large electrochemical active surface of nanosheet arrays, rich WP/WP2 heterojunction interface, and trace Ru atom doping, the catalyst has a fairly low overpotential of 58.0 mV at 10 mA cm-2 and a Tafel slope of 50.71 mV dec-1 in acid solution toward the electrocatalytic HER. Further, theoretical calculations unveil that Ru atom doping and interface effect synergistically optimized the electronic structure of the catalyst and hence weakened the adsorption capacity of the catalyst surface toward hydrogen (H), which lowered the Gibbs free energy (ΔGH*) and consequently effectively improved the HER performance. This work may open new avenues for developing advanced nanoarray electrodes with efficient electrochemical energy conversion.
Collapse
Affiliation(s)
- Zhichang Hu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Zhizhong Xiao
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Wei Wei
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Jian Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaoyu Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Qingcheng Lu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Sundaram Chandrasekaran
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Huidan Lu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Yongping Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| |
Collapse
|
2
|
Li J, He Q, Lin Y, Han L, Tao K. MOF-Derived Iron–Cobalt Bimetallic Selenides for Water Electrolysis with High-Efficiency Oxygen Evolution Reaction. Inorg Chem 2022; 61:19031-19038. [DOI: 10.1021/acs.inorgchem.2c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jiangning Li
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Qianyun He
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
3
|
Jin C, Hou M, Li X, Liu D, Qu D, Dong Y, Xie Z, Zhang C. Rapid electrodeposition of Fe-doped nickel selenides on Ni foam as a bi-functional electrocatalyst for water splitting in alkaline solution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Zhang L, Wei H, Jiu H, Wang C, Qin Y, Che S, Guo Z, Han Y. Ni 3N/Co 4N nanosheet heterojunction electrocatalyst for hydrogen evolution reaction in alkaline fresh water/simulated seawater. Dalton Trans 2022; 51:16733-16739. [DOI: 10.1039/d2dt02020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ni3N/Co4N nanosheet heterojunction exhibits higher HER activity in alkaline fresh water and simulated seawater.
Collapse
Affiliation(s)
- Lixin Zhang
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051, People's Republic of China
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Hao Wei
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Hongfang Jiu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Congli Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Yaqin Qin
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Sicong Che
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Zhixin Guo
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Yuxin Han
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
5
|
Cu(OH)2-Ni(OH)2 engulfed by zeolite-Y hydroxyl nest and multiwalled carbon nanotube for effective methanol oxidation reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Zheng M, Chen Q, Zhong Q. Flower-like 1T-MoS 2/NiCo 2S 4 on a carbon cloth substrate as an efficient electrocatalyst for the hydrogen evolution reaction. Dalton Trans 2021; 50:13320-13328. [PMID: 34608913 DOI: 10.1039/d1dt01948a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 1T-MoS2/NiCo2S4 composite in situ grown on carbon cloth (CC) was successfully prepared by a two-step hydrothermal method as an efficient electrode for the hydrogen evolution reaction. The morphology and composition characterization show that the composite has a flower-like structure with a large number of edges and surfaces exposed, and the content of the 1T phase in MoS2 is 63%. 1T-MoS2/NiCo2S4/CC exhibits an overpotential of 107 mV at 10 mA cm-2, and a Tafel slope of 66.4 mV dec-1 in an alkaline electrolyte. After continuous electrolysis for 24 h at an overpotential of 170 mV, 86% of the original current density was retained in an chronoamperometry measurement. The outstanding catalytic performance of the composite is ascribed to its unique structure, high 1T-MoS2 content and the synergistic catalysis between 1T-MoS2 and NiCo2S4. This work provides a facile and effective strategy for fabricating the 1T-MoS2/NiCo2S4/CC composite and demonstrates that the composite is expected to be a competitive non-noble HER catalyst.
Collapse
Affiliation(s)
- Meng Zheng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qianqiao Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qin Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
7
|
Jiang W, Sun J, Lu K, Jiang C, Xu H, Huang Z, Cao N, Dai F. 2D coordination polymer-derived CoSe 2-NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction. Dalton Trans 2021; 50:9934-9941. [PMID: 34223855 DOI: 10.1039/d1dt01487k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The evolution of cost-effective hydrogen evolution reaction (HER) electrocatalysts is of great significance for the development of clean energy. Exploring effective synthesis strategies to optimize the performance of non-noble metal electrocatalysts has always attracted our attention. Herein, ultrathin coordination polymers were used as precursors to controllably synthesize two-dimensional (2D) ultrathin dual-phase transition metal selenide (TMSs)/carbon-nitrogen (CN) composites (CoSe2-NiSe2/CN) by a two-step method (first a low temperature hydrothermal method for selenization, and then high temperature calcination selenization). Benefiting from its large specific surface area (49 m2 g-1), abundant catalytically active sites and synergistic effects, CoSe2-NiSe2/CN can significantly enhance the HER catalytic activity and exhibits good electrocatalytic activity with an overpotential of 150 mV at -10 mA cm-2, and a small Tafel slope of 42 mV dec-1 in an acidic electrolyte for the HER. This work provides a new strategy for optimizing the HER catalytic activity of TMSs by preparing 2D ultrathin dual-phase TMS composite materials.
Collapse
Affiliation(s)
- Weifeng Jiang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| | - Jianpeng Sun
- College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Kebin Lu
- College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Chuanhai Jiang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| | - Huakai Xu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| | - Zhaodi Huang
- College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Ning Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| | - Fangna Dai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| |
Collapse
|