1
|
Mansour AM, Radacki K, Shehab OR, Mostafa GAE, Ali EA, Abo-Elfadl MT. Cytotoxicity of Pd(ii) and Pt(ii) complexes of 2',6'-di(thiazol-2-yl)-2,4'-bipyridine: insights into the mode of cell death and cell cycle arrest. RSC Adv 2025; 15:12057-12066. [PMID: 40248241 PMCID: PMC12001024 DOI: 10.1039/d5ra00647c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Square-planar complexes were synthesized by the reaction of 2',6'-di(thiazol-2-yl)-2,4'-bipyridine with either Na2[PdCl4] or K2[PtCl4], and these were thoroughly structurally characterized using some analytical and spectroscopic techniques. Density functional theory computations, including natural bond orbital analysis, were used to complement the experimental work to gain insight into the natural charge and electronic arrangement of the metal ion, as well as the strength of the metal-ligand bonds. The Pd(ii) complex exhibited exceptional cytotoxicity against the A549 and HCT-116 cell lines with IC50 values of 60.1 ± 3.45 and 23.8 ± 1.48 μM, respectively. Unfortunately, the Pd(ii) complex was harmful to the Vero normal cell line with an IC50 value of 24.5 ± 2.13 μM. The Pt(ii) complex is unstable and has a high likelihood of exchanging the chlorido ligand for solvent molecules such as DMSO. The fluorescent-stain photos of the treated HCT-116 cells with the Pd(ii) complex showed increased apoptotic bodies, indicating both early (18%) and late apoptosis (32%), as well as a necrosis ratio of about 10%. Flow cytometric analysis demonstrated that a cell arrest was induced by the Pd(ii) complex on HCT-116 cells in the G2/M phase.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University Al-Ain United Arab Emirates
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street, Giza Cairo 12613 Egypt
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland D-97074 Würzburg Germany
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street, Giza Cairo 12613 Egypt
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre Dokki Giza 12622 Egypt
- Biochemistry Department, Biotechnology Research Institute, National Research Centre Dokki Giza 12622 Egypt
| |
Collapse
|
2
|
Mansour AM, Radacki K, Mostafa GAE, Ali EA, Shehab OR. Antimicrobial properties of triazolato terpyridine Pd(II) and Pt(II) complexes formed by [3+2] cycloaddition coupling reaction. Bioorg Chem 2024; 146:107262. [PMID: 38467092 DOI: 10.1016/j.bioorg.2024.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Modern classes of antimicrobials are crucial because most drugs in development today are basically antibiotic derivatives. Even though a large number of metal-based compounds have been studied as antimicrobial agents, relatively few studies have examined the antimicrobial properties of Pd(II) and Pt(II) compounds. The [3+2] cycloaddition reactions of [M(N3)L]PF6 (M = Pd(II) and Pt(II); L = 4'-(2-pyridyl)-2,2':6',2″-terpyridine) with 4,4,4-trifluoro-2-butynoic acid ethyl ester gave the corresponding triazolate complexes. The reaction products were fully characterized with a variety of analytical and spectroscopic tools including X-ray crystallographic analysis. The crystal structure of [Pd(triazolatoCF3,COOCH2CH3)L]PF6 provided cut-off evidence that the kinetically formed N1-triazolato isomer favoured the isomerization to the thermodynamically stable N2-analogue. The experimental work was complemented with computational work to get an insight into the nature of the predominant triazolate isomer. The lysozyme binding affinity of the triazolate complexes was examined by mass spectrometry. An analysis of the lysozyme Pd(II) adducts suggests a coordinative covalent mode of binding via the loss of the triazolato ligand. The free ligand and its triazolate complexes displayed selective toxicity against Candida albicans and Cryptococcus neoformans, while no cytotoxicity was observed against the normal human embryonic kidney cell line.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates; Department of Chemistry, Cairo University, Faculty of Science, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ola R Shehab
- Department of Chemistry, Cairo University, Faculty of Science, Gamma Street, Giza, Cairo 12613, Egypt
| |
Collapse
|
3
|
Palion-Gazda J, Choroba K, Maroń AM, Malicka E, Machura B. Structural and Photophysical Trends in Rhenium(I) Carbonyl Complexes with 2,2':6',2″-Terpyridines. Molecules 2024; 29:1631. [PMID: 38611910 PMCID: PMC11013590 DOI: 10.3390/molecules29071631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
This is the first comprehensive review of rhenium(I) carbonyl complexes with 2,2':6',2″-terpyridine-based ligands (R-terpy)-encompassing their synthesis, molecular features, photophysical behavior, and potential applications. Particular attention has been devoted to demonstrating how the coordination mode of 2,2':6',2″-terpyridine (terpy-κ2N and terpy-κ3N), structural modifications of terpy framework (R), and the nature of ancillary ligands (X-mono-negative anion, L-neutral ligand) may tune the photophysical behavior of Re(I) complexes [Re(X/L)(CO)3(R-terpy-κ2N)]0/+ and [Re(X/L)(CO)2(R-terpy-κ3N)]0/+. Our discussion also includes homo- and heteronuclear multicomponent systems with {Re(CO)3(R-terpy-κ2N)} and {Re(CO)2(R-terpy-κ3N)} motifs. The presented structure-property relationships are of high importance for controlling the photoinduced processes in these systems and making further progress in the development of more efficient Re-based luminophores, photosensitizers, and photocatalysts for modern technologies.
Collapse
Affiliation(s)
- Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland; (K.C.); (A.M.M.); (E.M.)
| | | | | | | | - Barbara Machura
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland; (K.C.); (A.M.M.); (E.M.)
| |
Collapse
|
4
|
Mansour AM, Radacki K, Mostafa GAE, Ali EA, Shehab OR. Reactivity of azido terpyridine Pd(ii) and Pt(ii) complexes towards 4,4,4-trifluoro-2-butynoic acid: structural insight into the triazolato coordination mode. RSC Adv 2023; 13:34826-34835. [PMID: 38035227 PMCID: PMC10685405 DOI: 10.1039/d3ra06656h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
The mono- and binuclear azido terpyridine square-planar complexes of ionic formulas, [Pd2(N3)2L]2+ and [Pt(N3)L]+ (L = 1,4-bis(2,2':6',2''-terpyridin-4'yl)benzene), underwent the catalyst-free [3 + 2] cycloaddition coupling with 4,4,4-trifluoro-2-butynoic acid at ambient temperature affording the corresponding triazolate complexes. A mixture of triazolate isomers was generated by these inorganic click reactions. An increase in the solubility of the compounds was achieved by replacing the azido ligand with a triazolato ligand. By calculating the vibrational modes and comparing the total electronic and zero-point energy values, the local minimum structures of the complexes and the nature of the predominant triazolate isomer were verified. The theoretical work was complemented with natural bond analysis to get an insight into the natural charge and electronic arrangement of the metal ion, the hybridization of M-L bonds and strength of M-N bonds.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, United Arab Emirates University Al-Ain United Arab Emirates
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland D-97074 Würzburg Germany
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street Giza 12613 Egypt
| |
Collapse
|
5
|
Mansour AM, Shehab OR. Triazolato Pd(II) and Pt(II) complexes of 2,6-bis(1-ethylbenzimidazol-2'-yl)pyridine formed via catalyst-free [3+2] click reactions. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Mansour AM, Ibrahim NM, Farag AM, Abo-Elfadl MT. Evaluation of cytotoxic properties of two fluorescent fac-Re(CO) 3 complexes bearing an N, N-bidentate benzimidazole coligand. RSC Adv 2022; 12:30829-30837. [PMID: 36349156 PMCID: PMC9608107 DOI: 10.1039/d2ra05992d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The reaction between 1H-benzimidazol-2-ylmethyl-(N-aryl)amine derivatives (LR) and [ReBr(CO)5] afforded octahedral Re(i) complexes of the general formula of [ReBr(CO)3LR] (R = 4-Cl and 4-COOCH3). The Re(i) complexes were screened for their potential cytotoxicity against three malignant cell lines and one normal cell line of different origins. The solvatochromic characteristics of the complexes were examined by UV/vis. spectroscopy with the aid of time-dependent density functional theory calculations. Strong autofluorescence emission can be seen in the two Re(i) complexes between 460 and 488 nm. They appeared to accumulate inside intercellular connections and surrounding cellular membranes. The substances gathered also, along the cell membrane, waiting for their entry. The mode of cell death staining and the DNA fragmentation analysis revealed that the 4-Cl complex showed increased apoptotic changes in the MCF-7, and the Caco-2 cell line, while the HepG2 cell line showed little apoptotic changes.
Collapse
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Nourhan M. Ibrahim
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Ahmad M. Farag
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Mahmoud T. Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research CentreDokkiCairo 12622Egypt,Biochemistry Department, Biotechnology Research Institute, National Research CentreDokkiCairo 12622Egypt
| |
Collapse
|
7
|
Mansour AM, Radacki K, Shehab OR. Role of the ancillary ligand in determining the antimicrobial activity of Pd(II) complexes with N^N^N-tridentate Coligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Mansour AM. Pd(ii) and Pt(ii) complexes of tridentate ligands with selective toxicity against Cryptococcus neoformans and Candida albicans. RSC Adv 2021; 11:39748-39757. [PMID: 35494132 PMCID: PMC9044551 DOI: 10.1039/d1ra06559a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Novel Pd(ii) and Pt(ii) complexes of the tridentate 2,6-bis(1-ethyl-benzimidazol-2'-yl)pyridine (LBZ), and 4'-(2-pyridyl)-2,2':6',2''-terpyridine (LPY) ligands were synthesized, characterized using a variety of analytical and spectroscopic tools, and screened for their potential antimicrobial properties against some bacterial and fungal strains as well as cytotoxicity against healthy human embryonic kidney (HEK293) cells. The electronic structures of the complexes were investigated by time-dependent density functional theory calculations. The free ligand LPY and benzimidazole complexes exhibited selective toxicity against Cryptococcus neoformans and Candida albicans, while displaying no cytotoxicity against HEK293. In the case of Cryptococcus neoformans, the antifungal activities of the benzimidazole-based complexes (MIC = 1.58-2.62 μM) are higher than those of the reference drug fluconazole (26.1 μM).
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University Gamma Street Giza Cairo 12613 Egypt
| |
Collapse
|
9
|
|
10
|
Mansour AM, Radacki K, Shehab OR. Half-sandwich triazolato Rh(III) compound of pyridylbenzimidazole ligand with cell selective toxicity towards Cryptococcus neoformans. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Mansour AM. Tricarbonyl triazolato Re( i) compounds of pyridylbenzimidazole ligands: spectroscopic and antimicrobial activity evaluation. RSC Adv 2021; 11:22715-22722. [PMID: 35480466 PMCID: PMC9034272 DOI: 10.1039/d1ra03063a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Catalyst-free [3+2] cycloaddition coupling between [Ren(N3)n(CO)3nL] (n = 1, L = 1-ethyl-2-(pyridin-2-yl)benzimidazole (L1) and n = 2, L = 1,1′-(hexane-1,6-diyl)bis[2-(pyridin-2-yl)-1H-benzimidazole] (L2)) and dimethyl acetylene dicarboxylate (DMAD) afforded mono- and binuclear triazolate complexes. Spectroscopic data presented unambiguous evidence for isomerization of the kinetically formed N(1) bound triazolate isomer into the N(2) analogue. The solvatochromism properties were assessed by UV/Vis spectroscopy with the aid of time dependent density functional theory calculations. The free ligands and their tricarbonyl triazolato Re(i) complexes were screened for their potential antimicrobial activity against different bacterial and fungal pathogens. The antimicrobial activity and solvatochromism properties of mono- and binuclear tricarbonyl triazolato Re(i) complexes of pyridylbenzimidazole, formed by catalyst-free [3+2] cycloaddition reaction, were examined.![]()
Collapse
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry
- Faculty of Science
- Cairo University
- Cairo 12613
- Egypt
| |
Collapse
|