1
|
Afshariazar F, Morsali A. Mixed-valence metal-organic frameworks: concepts, opportunities, and prospects. Chem Soc Rev 2025; 54:1318-1383. [PMID: 39704326 DOI: 10.1039/d4cs01061b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Owing to increasing global demand for the development of multifunctional advanced materials with various practical applications, great attention has been paid to metal-organic frameworks due to their unique properties, such as structural, chemical, and functional diversity. Several strategies have been developed to promote the applicability of these materials in practical fields. The induction of mixed-valency is a promising strategy, contributing to exceptional features in these porous materials such as enhanced charge delocalization, conductivity, magnetism, etc. The current review provides a detailed study of mixed-valence MOFs, including their fundamental properties, synthesis challenges, and characterization methods. The outstanding applicability of these materials in diverse fields such as energy storage, catalysis, sensing, gas sorption, separation, etc. is also discussed, providing a roadmap for future design strategies to exploit mixed valency in advanced materials. Interestingly, mixed-valence MOFs have demonstrated fascinating features in practical fields compared to their homo-valence MOFs, resulting from an enhanced synergy between mixed-valence states within the framework.
Collapse
Affiliation(s)
- Farzaneh Afshariazar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, PO Box 14115-4838, Tehran, Islamic Republic of Iran.
| |
Collapse
|
2
|
Liu ZK, Ji XY, Yu M, Li YX, Hu JS, Zhao YM, Yao ZS, Tao J. Proton-Induced Reversible Spin-State Switching in Octanuclear Fe III Spin-Crossover Metal-Organic Cages. J Am Chem Soc 2024; 146:22036-22046. [PMID: 39041064 DOI: 10.1021/jacs.4c07469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Responsive spin-crossover (SCO) metal-organic cages (MOCs) are emerging dynamic platforms with potential for advanced applications in magnetic sensing and molecular switching. Among these, FeIII-based MOCs are particularly noteworthy for their air stability, yet they remain largely unexplored. Herein, we report the synthesis of two novel FeIII MOCs using a bis-bidentate ligand approach, which exhibit SCO activity above room temperature. These represent the first SCO-active FeIII cages and feature an atypical {FeN6}-type coordination sphere, uncommon for FeIII SCO compounds. Our study reveals that these MOCs are sensitive to acid/base variations, enabling reversible magnetic switching in solution. The presence of multiple active proton sites within these SCO-MOCs facilitates multisite, multilevel proton-induced spin-state modulation. This behavior is observed at room temperature through 1H NMR spectroscopy, capturing the subtle proton-induced spin-state transitions triggered by pH changes. Further insights from extended X-ray absorption fine structure (EXAFS) and theoretical analyses indicate that these magnetic alterations primarily result from the protonation and deprotonation processes at the NH active sites on the ligands. These processes induce changes in the secondary coordination sphere, thereby modulating the magnetic properties of the cages. The capability of these FeIII MOCs to integrate magnetic responses with environmental stimuli underscores their potential as finely tunable magnetic sensors and highlights their versatility as molecular switches. This work paves the way for the development of SCO-active materials with tailored properties for applications in sensing and molecular switching.
Collapse
Affiliation(s)
- Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xue-Yang Ji
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Xia Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Meng Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
3
|
Kalinke LHG, Rabelo R, Valdo AK, Martins FT, Moliner N, Ferrando-Soria J, Julve M, Lloret F, Cano J, Cangussu D. Trinuclear Cobalt(II) Triple Helicate with a Multidentate Bithiazolebis(oxamate) Ligand as a Supramolecular Nanomagnet. Inorg Chem 2022; 61:5696-5700. [PMID: 35385259 DOI: 10.1021/acs.inorgchem.2c00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cobalt(II)-mediated self-assembly of the potentially tris(chelating) N,N'-2,2'-(4,4'-bithiazole)bis(oxamate) (dabtzox) ligand gives a new metal-organic supramolecular nanomagnet of formula K6Co3(dabtzox)3·8H2O·MeOH (1) featuring a unique linear triple-stranded trinuclear structure of the helicate type.
Collapse
Affiliation(s)
- Lucas H G Kalinke
- Instituto Federal de Goiás, IFG-Câmpus Anápolis, Anápolis, Goiás 75131-457, Brazil
| | - Renato Rabelo
- Departament de Química Inorgànica, Instituto de Ciencia Molecular, 46980 C/Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Ana K Valdo
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Iporá, Goiás 76200-000, Brazil
| | - Felipe T Martins
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás 74001-970, Brazil
| | - Nicolás Moliner
- Departament de Química Inorgànica, Instituto de Ciencia Molecular, 46980 C/Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Jesus Ferrando-Soria
- Departament de Química Inorgànica, Instituto de Ciencia Molecular, 46980 C/Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Miguel Julve
- Departament de Química Inorgànica, Instituto de Ciencia Molecular, 46980 C/Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Francesc Lloret
- Departament de Química Inorgànica, Instituto de Ciencia Molecular, 46980 C/Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Joan Cano
- Departament de Química Inorgànica, Instituto de Ciencia Molecular, 46980 C/Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Danielle Cangussu
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás 74001-970, Brazil
| |
Collapse
|
4
|
Panja A, Jagličić Z, Herchel R, Brandão P, Pramanik K, Jana NC. Three angular Zn 2Dy complexes showing the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres. NEW J CHEM 2022. [DOI: 10.1039/d2nj01759h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three isostructural Zn2Dy complexes displaying the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
5
|
Panja A, Jagličić Z, Herchel R, Brandão P, Pramanik K, Jana NC. The first exploration of coordination chemistry using a methyl substituted o-vanillin based ligand: an example starting with Dy 4/Zn 2Dy 2 systems displaying slow relaxation of magnetization. NEW J CHEM 2022. [DOI: 10.1039/d1nj05717k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two butterfly-shaped Dy4 and Zn2Dy2 complexes displaying slow relaxation of magnetization have been synthesized from a new methyl substituted o-vanillin based ligand, enlarging the scope for finding better SMMs.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|