1
|
Tian H, Ling N, Guo C, Gao M, Wang Z, Liu B, Sun Y, Chen Y, Ji C, Li W. Immunostimulatory activity of sea buckthorn polysaccharides via TLR2/4-mediated MAPK and NF-κB signaling pathways in vitro and in vivo. Int J Biol Macromol 2024; 283:137678. [PMID: 39566757 DOI: 10.1016/j.ijbiomac.2024.137678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
SP0.1-1, derived from Sea buckthorn (Hippophae rhamnoides L.), has been discovered to exhibit unique antioxidant activity. In this study, we investigated the immunomodulatory activity and mechanisms of SP0.1-1 on macrophage RAW 264.7 cells in vitro and immunosuppressive mice induced by cyclophosphamide in vivo. The results indicated SP0.1-1 strengthened the immune functions via promoting the proliferation of RAW264.7 cells and phagocytic activity, along with stimulating the release of NO, ROS and cytokines including TNF-α, IL-6, IL-1β and IFN-γ. Western blot and molecular docking analysis demonstrated that SP0.1-1 attached to the prime receptors TLR2 and TLR4 in RAW264.7 cells, and triggered the activation of MyD88-mediated MAPK and NF-κB signaling pathways, thereby exerting the immune response in RAW264.7 cells. However, the intervention of specific inhibitors against TLR2, TLR4, JNK, ERK, p38 and NF-κB blocked the TLR-mediated MAPK and NF-κB signaling pathways and downregulated the levels of NO and the aforementioned cytokines, thus suppressing the activation of macrophages. Therefore, it can be speculated that SP0.1-1 activated the macrophages principally via the TLR2/4-MyD88-mediated MAPK and NF-κB signaling pathways. Additionally, SP0.1-1 could protect against the cyclophosphamide-induced immunosuppression in mice, manifested by the improvement of body weight, immune organ indices, phagocytic index, and the relievement of spleen damage, along with the enhancement of cytokines TNF-α, IL-6, IFN-γ and immunoglobulin IgG and IgM. These findings will shed light on the molecular mechanism of SP0.1-1 on the immunoregulatory effect, and lay the foundation for exploiting a potential immunostimulatory agent of SP0.1-1.
Collapse
Affiliation(s)
- Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| | - Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Zihao Wang
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Bing Liu
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| | - Yin Chen
- School of Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chenfeng Ji
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| | - Wenlan Li
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin 150076,China; Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
2
|
Wang W, Pan Y, Lin Y, Zhao J, Liu M, Wang G, Li S. Network pharmacology combined with an experimental validation study to reveal the effect and mechanism of Lonicera japonica Thunb. extracts against immunomodulation. J Food Sci 2024; 89:3829-3846. [PMID: 38745368 DOI: 10.1111/1750-3841.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Lonicera japonica Thunb. (LJT) is known for its valuable medicinal properties that highlight its potential application in the pharmaceutical and health food industry. We predict that LJT polyphenols by network pharmacology may be involved in immunomodulation, and the study of LJT polyphenols regulating immunity is still insufficient; therefore, we experimentally found that LJT enhances immunity by promoting the proliferation and phagocytic activity of RAW246.7 cells. A model of an immunosuppressed mouse was constructed using cyclophosphamide-induced, and LJT was extracted for the intervention. We found that LJT restored immune homeostasis in immune deficiency mice by inhibiting the abnormal apoptosis in lymphocytes, enhancing natural killer cell cytotoxicity, promoting T lymphocyte proliferation, and increasing the CD4+ and CD8+ T lymphocytes in quantity. Moreover, LJT treatment modulates immunity by significantly downregulating lipopolysaccharide-induced inflammation and oxidative stress levels. We verified the immunomodulatory function of LJT through both cell and animal experiments. The combination of potential-protein interactions and molecular docking later revealed that LJT polyphenols were associated with immunomodulatory effects on MAPK1; together, LJT intervention significantly modulates the immune, with the activation of MAPK1 as the underlying mechanism of action, which provided evidence for the utilization of LJT as a nutraceutical in immune function.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yunan Pan
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yucheng Lin
- Shanghai JAKA Biotech Co., Ltd., Shanghai, People's Republic of China
| | - Junjie Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Meimei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Guangyu Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Shanshan Li
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Zhang R, Zhang XZ, Guo X, Han LL, Wang BN, Zhang X, Liu RD, Cui J, Wang ZQ. The protective immunity induced by Trichinella spiralis galectin against larval challenge and the potential of galactomannan as a novel adjuvant. Res Vet Sci 2023; 165:105075. [PMID: 37931574 DOI: 10.1016/j.rvsc.2023.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1β) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
4
|
Caban M, Lewandowska U. Encapsulation of Polyphenolic Compounds Based on Hemicelluloses to Enhance Treatment of Inflammatory Bowel Diseases and Colorectal Cancer. Molecules 2023; 28:molecules28104189. [PMID: 37241929 DOI: 10.3390/molecules28104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are difficult to cure, and available treatment is associated with troubling side effects. In addition, current therapies have limited efficacy and are characterized by high costs, and a large segment of the IBD and CRC patients are refractive to the treatment. Moreover, presently used anti-IBD therapies in the clinics are primarily aimed on the symptomatic control. That is why new agents with therapeutic potential against IBD and CRC are required. Currently, polyphenols have received great attention in the pharmaceutical industry and in medicine due to their health-promoting properties. They may exert anti-inflammatory, anti-oxidative, and anti-cancer activity, via inhibiting production of pro-inflammatory cytokines and enzymes or factors associated with carcinogenesis (e.g., matrix metalloproteinases, vascular endothelial growth factor), suggesting they may have therapeutic potential against IBD and CRC. However, their use is limited under both processing conditions or gastrointestinal interactions, reducing their stability and hence their bioaccessibility and bioavailability. Therefore, there is a need for more effective carriers that could be used for encapsulation of polyphenolic compounds. In recent years, natural polysaccharides have been proposed for creating carriers used in the synthesis of polyphenol encapsulates. Among these, hemicelluloses are particularly noteworthy, being characterized by good biocompatibility, biodegradation, low immunogenicity, and pro-health activity. They may also demonstrate synergy with the polyphenol payload. This review discusses the utility and potential of hemicellulose-based encapsulations of polyphenols as support for treatment of IBD and CRC.
Collapse
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
5
|
Zeng FS, Yao YF, Wang LF, Li WJ. Polysaccharides as antioxidants and prooxidants in managing the double-edged sword of reactive oxygen species. Biomed Pharmacother 2023; 159:114221. [PMID: 36634589 DOI: 10.1016/j.biopha.2023.114221] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Polysaccharides, a class of naturally occurring carbohydrates, were widely presented in animals, plants, and microorganisms. Recently, health benefits of polysaccharides have attracted much attention due to their unique characteristics in reactive oxygen species (ROS) management. ROS, by-products of aerobic metabolism linked to food consumption, exhibited a dual role in protecting cells and fostering pathogenesis collectively termed double-edged sword. Some interesting studies reported that polysaccharides could behave as prooxidants under certain conditions, besides antioxidant capacities. Potentiation of the bright side of ROS could contribute to the host defense that was vitally important for the polysaccharides acting as biological response modifiers. Correspondingly, disease prevention of polysaccharides linked to the management of ROS production was systematically described and discussed in this review. Furthermore, major challenges and future prospects were presented, aiming to provide new insight into applying polysaccharides as functional food ingredients and medicine.
Collapse
Affiliation(s)
- Fan-Sen Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yu-Fei Yao
- Department of Critical Care Medicine, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Le-Feng Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
6
|
Yan B, Tao Y, Huang C, Lai C, Yong Q. Using One-pot Fermentation Technology to Prepare Enzyme Cocktail to Sustainably Produce Low Molecular Weight Galactomannans from Sesbania cannabina Seeds. Appl Biochem Biotechnol 2022; 194:3016-3030. [PMID: 35334068 DOI: 10.1007/s12010-022-03891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Enzymatic hydrolysis using β-mannanase and α-galactosidase is necessary to produce low molecular weight galactomannan (LMW-GM) from galactomannans (GM) in the leguminous seeds. In this study, different ratios of avicel and melibiose were used as the inductors (carbon sources) for Trichoderma reesei to metabolize the enzyme cocktail containing β-mannanase and α-galactosidase using one-pot fermentation technology. The obtained enzyme cocktail was used to efficiently produce LMW-GM from GM in Sesbania cannabina seeds. Results showed that 15 g/L avicel and 10 g/L melibiose were the best carbon sources to prepare enzyme cocktail containing β-mannanase and α-galactosidase with activities of 3.69 ± 0.27 U/mL and 0.51 ± 0.02 U/mL, respectively. Specifically, melibiose could effectively induce the metabolite product of α-galactosidase by T. reesei, which showed good performance in degrading the galactose substituent from GM backbone. The degradation of galactose alleviated the spatial site-blocking effect for enzymatic hydrolysis by β-mannanase and improved the yield of LMW-GM. This research can lay the foundation for the industrial technology amplification of LMW-GM production for further application.
Collapse
Affiliation(s)
- Bowen Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuheng Tao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
7
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. Rheological properties of Sesbania cannabina galactomannan as a new source of thickening agent. J Food Sci 2022; 87:1527-1539. [PMID: 35275400 DOI: 10.1111/1750-3841.16094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
The present study evaluated the rheological properties of galactomannan from Sesbania cannabina. The intrinsic viscosity of galactomannan was determined to be 8.63 ± 0.06 dl/g. Moreover, the onset of galactomannan coil overlap occurred at 5.12 ± 0.13 g/L. With increasing concentration, galactomannan showed a more distinct shear-thinning behavior, which was well characterized by the Cross model. Notably, the viscosity of polysaccharide showed a negative relationship with the temperature, while the activation energy decreased with increasing polysaccharide concentration. Furthermore, at high concentrations, the galactomannan solution showed stability after heating or freezing, as well as over the wide pH range of 5.0-9.0. Dynamic viscoelasticity measurements reveal a gradual transition from viscous to elastic behavior of galactomannans with an increasing frequency. It is anticipated that S. cannabina galactomannan will find interesting applications as a natural thickener due to the comprehensive description of its rheological properties presented herein. PRACTICAL APPLICATION: The investigated S. cannabina galactomannan has shown a higher viscosity and heat stability at high concentration, as well as a good stability at the pH range of 5-9. The S. cannabina galactomannan may be employed as stabilizers in the food field.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Pan L, Wang Q, Qu L, Liang L, Han Y, Wang X, Zhou Z. Pilot-scale production of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 and its application in set yogurt. J Dairy Sci 2022; 105:1072-1083. [PMID: 34998545 DOI: 10.3168/jds.2021-20997] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022]
Abstract
Exopolysaccharide from Leuconostoc pseudomesenteroides XG5 (XG5 EPS) is a linear dextran that is built by glucose units via α-1,6 glycosidic bond. The primary objective of this study was to investigate the yield of XG5 EPS and its application in set yogurt. In laboratory scale, the culture conditions of XG5 EPS production were optimized using the L9 (33) orthogonal test. Here, the optimized yield of XG5 EPS was 26.02 g/L under the conditions of 100 g/L sucrose, initial pH 7.0, 25°C incubation, and 100 rpm for 36 h in a shaking flask. Based on the optimized parameters of laboratory scale, a pilot fed-batch fermentation was performed in a 50-L bioreactor with an adjusted agitation speed of 20 rpm. The XG5 EPS yield reached 40.07 g/L in fed-batch fermentation, which was 54% higher than that achieved in laboratory scale. In addition, XG5 EPS was added into set yogurt to investigate its effect on the stability of set yogurt. Our data demonstrated that the XG5 EPS improved the water-holding capacity, texture profile, and viscosity of set yogurt during cold storage compared with the controls. In particular, addition of 0.5% XG5 EPS increased the structure of 3-dimensional network of set yogurt, which eventually improved the physical stability of the set yogurt. Overall, this study provided new insights for exploring the pilot scale production and application of dextran.
Collapse
Affiliation(s)
- Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Liangfan Qu
- Tianjin Research Institute of Industrial Microbiology Co., Ltd., Tianjin 300462, China
| | - Lu Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xianghe Wang
- Tianjin Research Institute of Industrial Microbiology Co., Ltd., Tianjin 300462, China; Tianjin SF-Bio Industrial Bio-Tec Co., Ltd., Tianjin 300462, China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
9
|
Antidiabetic activity of galactomannan from Chinese Sesbania cannabina and its correlation of regulating intestinal microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
10
|
Development of Broad-Spectrum Antiviral Agents-Inspiration from Immunomodulatory Natural Products. Viruses 2021; 13:v13071257. [PMID: 34203182 PMCID: PMC8310077 DOI: 10.3390/v13071257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Developing broad-spectrum antiviral drugs remains an important issue as viral infections continue to threaten public health. Host-directed therapy is a method that focuses on potential targets in host cells or the body, instead of viral proteins. Its antiviral effects are achieved by disturbing the life cycles of pathogens or modulating immunity. In this review, we focus on the development of broad-spectrum antiviral drugs that enhance the immune response. Some natural products present antiviral effects mediated by enhancing immunity, and their structures and mechanisms are summarized here. Natural products with immunomodulatory effects are also discussed, although their antiviral effects remain unknown. Given the power of immunity and the feasibility of host-directed therapy, we argue that both of these categories of natural products provide clues that may be beneficial for the discovery of broad-spectrum antiviral drugs.
Collapse
|