1
|
Wang X, Jiang D, An X, Li S, Qi Y, Yang Y, Wang Z, Sun Q, Ling W, Ji C, Qi Y, Xu H, Han C, Zhao H, Kang B. Effects of wheat germ diet on intestinal antioxidant capacity, immunological function and gut microbiota of Sichuan white geese. Front Microbiol 2024; 15:1435454. [PMID: 39323886 PMCID: PMC11422236 DOI: 10.3389/fmicb.2024.1435454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Background Wheat germ is known for its antioxidant, anti-inflammatory, and disease resistance properties in animals. However, its effect on the gut of Sichuan white geese remains unclear. Method In this study, thirty 250-day-old geese were divided into three equal groups, the control group, LWG group (21.8% wheat germ) and HWG group (43.6% wheat germ), the experiment lasted 12 weeks. We assessed various aspects of geese intestinal health, including barrier function, digestibility, antioxidant capacity, immunity, microbiota, and metabolism. Results The study revealed a significant increase in villus height (VH), villus height-to-crypt depth (VH/CD) ratio, amylase, and lipase activities in the duodenum and ileum, increased putrescine levels in the duodenum and jejunum, as well as spermidine levels in the jejunum (P < 0.05). LWG increased the total antioxidant capacity (T-AOC) in the duodenum, while decreasing levels of intestinal malondialdehyde (MDA), serum lipopolysaccharide (LPS), interleukin-6 (IL-6), and diamine oxidase (DAO) activity (P < 0.05). Furthermore, LWG increased the relative abundance of Oscillospiraceae_unclassified, Ligilactobacillus, and Roseburia, as well as increased levels of acetic acid, butyric acid, and valeric acid, while decreasing the relative abundance of Subdoligranulum, Flavonifractor, and Klebsiella. Additionally, we observed 17 up-regulated genes and 25 down-regulated genes in the jejunum, which are associated with the cell cycle and immunity. These genes play roles in pathways such as the p53 signaling pathway, cell cycle regulation, and pathways associated with immune modulation. On the other hand, HWG increased intestinal VH and spermidine levels, as well as amylase and lipase activities in the duodenum (P < 0.05). It also elevated ileal T-AOC and sIgA levels (P < 0.05), while reducing intestinal MDA content, serum LPS levels, DAO activity, and propionic acid in cecum contents (P < 0.05). Moreover, HWG increased the relative abundance of Ligilactobacillus, Oscillospiraceae_unclassified, and Roseburia (P < 0.05). Conclusion Overall, wheat germ diets, particularly the LWG diet demonstrated the ability to enhance antioxidant capacity, digestibility, immunity, and barrier properties of the intestinal tract, while modulating the gut microbiota and metabolism. Therefore, wheat germ diets hold promise in improving intestinal health by preserving barrier function and regulating flora structure.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoguang An
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuxin Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yujie Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zelong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qian Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Weikang Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chengweng Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yuxuan Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Li X, Li Z, Zhang X, Zeng Q, Huang X, Sheng L, Ahn DU, Cai Z. Restoration of immunity by whole egg was superior to egg white or egg yolk in a cyclophosphamide-induced immunocompromised mouse model. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Shan Y, Sun C, Li J, Shao X, Wu J, Zhang M, Yao H, Wu X. Characterization of Purified Mulberry Leaf Glycoprotein and Its Immunoregulatory Effect on Cyclophosphamide-Treated Mice. Foods 2022; 11:foods11142034. [PMID: 35885277 PMCID: PMC9324946 DOI: 10.3390/foods11142034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Mulberry leaf protein is a potentially functional food component and health care agent with antioxidant and anti-inflammatory properties. However, its composition, immunoregulatory effects, and gut microbial regulatory effects are unclear. Herein, ultra-filtrated and gel-fractionated mulberry leaf protein (GUMP) was characterized. Its effects on cyclophosphamide-induced immunosuppressed mice were further investigated. The results indicated that GUMP is a glycoprotein mainly containing glucose, arabinose, and mannose with 9.23% total sugar content. Its secondary structure is mainly β-sheet. LC–MS/MS analysis showed that GUMP closely matched with a 16.7 kDa mannose-binding lectin and a 52.7 kDa Rubisco’s large subunit. GUMP intervention significantly improved serous TNF-α, IL-6, and IL-2 contents; increased serum immunoglobulins (IgA and IgG) levels; and reversed splenic damage prominently. Moreover, GUMP administration increased fecal shot-chain fatty acid concentration and up-regulated the relative abundance of Odoribacter, which was positively correlated with SCFAs and cytokine contents. Overall, GUMP alleviated immunosuppression through the integrated modulation of the gut microbiota and immune response. Therefore, GUMP could be a promising dietary supplement to help maintain gut health.
Collapse
Affiliation(s)
- Yangwei Shan
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (Y.S.); (X.S.); (J.W.)
| | - Chongzhen Sun
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (Y.S.); (X.S.); (J.W.)
- School of Public Health, Guangdong Pharmaceutical University, Jianghai Avenue 283, Haizhu District, Guangzhou 510006, China
- Correspondence: (C.S.); (X.W.)
| | - Jishan Li
- Faculty of Engineering Technology, KU Leuven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium;
| | - Xin Shao
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (Y.S.); (X.S.); (J.W.)
| | - Junfeng Wu
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (Y.S.); (X.S.); (J.W.)
| | - Mengmeng Zhang
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Hong Yao
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (Y.S.); (X.S.); (J.W.)
- Correspondence: (C.S.); (X.W.)
| |
Collapse
|
4
|
Li Z, Li X, Cai Z, Jin G, Ahn DU, Huang X. Immunomodulatory Effects of Chicken Soups Prepared with the Native Cage-free Chickens and the Commercial Caged Broilers. Poult Sci 2022; 101:102053. [PMID: 35986946 PMCID: PMC9411684 DOI: 10.1016/j.psj.2022.102053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to compare the immunomodulatory effects of the chicken soups prepared with the native free-range chickens and the commercial caged broilers in the immunosuppressive mice. The immunosuppressive mice model was established by the intraperitoneal injection of 100 mg of cyclophosphamide (CTX) per kg body weight. The powders of Gushi Chicken Soup (GCS), Honglashan Chicken Soup (HCS), and Cobb Broiler Soup (CBS) were prepared by high-pressure stewing followed by spray drying. The chicken soups' nutrient content and the effects of three chicken soups on the body weight, organ index, blood index, and serum cytokine and immunoglobulin contents in the immunosuppressive mice were determined. The three chicken soups promoted the recovery of immunosuppressive mice, but the expression mechanisms were different. The GCS was more effective than the HCS and CBS in restoring blood index, promoting cytokine secretion, and increasing immunoglobulin content (P < 0.05). The HCS stimulated the Th1-type immune response and promoted immunoglobulin secretion (P < 0.05), while the CBS increased the production of CD4+ and promoted the T-cell functions better than other soups (P < 0.05). Although soups from the native free-range chickens and the commercial caged broilers showed distinctly different mechanisms in promoting immunity, both could be used as potential immunomodulators.
Collapse
Affiliation(s)
- Zuyue Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaomeng Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhaoxia Cai
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Guofeng Jin
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Dong Uk Ahn
- Animal Science Department, Iowa State University, Ames, USA
| | - Xi Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
5
|
Xiang X, Wang R, Chen L, Chen Y, Zheng B, Deng S, Liu S, Sun P, Shen G. Immunomodulatory activity of a water-soluble polysaccharide extracted from mussel on cyclophosphamide-induced immunosuppressive mice models. NPJ Sci Food 2022; 6:26. [PMID: 35478196 PMCID: PMC9046246 DOI: 10.1038/s41538-022-00140-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
This study aimed to investigate the protective effect of mussel polysaccharide (MP) on cyclophosphamide (Cy)-induced intestinal mucosal immunosuppression and microbial dysbiosis in mice. MP was shown to stimulate secretion of cytokines (SIgA, IL-2, IF-γ, IL-4, IL-10) and production of transcription factors (occludin, claudin-1, ZO-1, mucin-2, IL-2, IF-γ, IL-4, IL-10). Key proteins (p-IκB-α, p-p65) of the NF-κB pathway were upregulated after MP administration. SCFAs levels, which were decreased after the Cy treatment, were improved after treatment with MP. Furthermore, 16 S rRNA sequencing data of fecal samples revealed, through α-diversity and β-diversity analysis, that MP improved microbial community diversity and modulate the overall composition of gut microbiota. Taxonomic composition analysis showed that MP increased the abundance of probiotics species (Lactobacillus) and decreased the proportion of pathogenic species (Desulfovibrio). These findings suggested that MP has a potential immunomodulatory activity on the immunosuppressive mice.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Lin Chen
- Sericultural and Tea Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Shanggui Deng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China. .,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China. .,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Guoxin Shen
- Sericultural and Tea Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
6
|
Fan L, Yang M, Ma S, Huang J. Isolation, purification, and characterization of the globulin from wheat germ. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ling Fan
- Food and Pharmacy College Xuchang University Xuchang Henan 461000 China
| | - Mingqian Yang
- College of Biological Engineer Henan University of Technology Zhengzhou Henan 450001 China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Jihong Huang
- Food and Pharmacy College Xuchang University Xuchang Henan 461000 China
- College of Biological Engineer Henan University of Technology Zhengzhou Henan 450001 China
| |
Collapse
|
7
|
Chen P, Chen F, Lei J, Zhou B. Gut microbial metabolite urolithin B attenuates intestinal immunity function in vivo in aging mice and in vitro in HT29 cells by regulating oxidative stress and inflammatory signalling. Food Funct 2021; 12:11938-11955. [PMID: 34747418 DOI: 10.1039/d1fo02440j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urolithin B (Uro B), one of the major subcategories of urolithins (microbial metabolites) found in various tissues after ellagitannin consumption, has been demonstrated to possess antioxidant and anti-inflammatory effects. The current research mainly focused on the ameliorative effect of Uro B on intestinal immunity function and exploring the potential mechanisms of its protective role in aging mice induced by D-galactose (D-gal). In the current research, we assessed the ameliorative effects of Uro B on inflammatory injury induced by lipopolysaccharides in HT29 cells. The D-gal-induced accelerated aging model in vivo demonstrated that Uro B could elevate the activities of superoxide dismutase, catalase, glutathione peroxidase, and total anti-oxidation capability, decrease malondialdehyde content, regulate the levels of inflammatory cytokines (IL-6, TNF-α, IFN-γ, IL-4, and IL-1β) in the small intestine, and reshape the composition of gut microbiota and decrease the intestinal barrier injury in aging mice. Furthermore, Uro B inhibited the expression of TLR4, IRAK4, TRAF6, IKK-β, NF-κB p65, and HMGB1 in the small intestine. Therefore, these findings indicated that Uro B effectively weakened the injury to the small intestine and ameliorated intestinal immunity function through the downregulation of the HMGB1-TLR4-NF-κB pathway in aging mice. Uro B could be considered a healthcare product to prevent diseases associated with an aging immune system.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Benhong Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China. .,Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|