1
|
Sharma S, Majumdar RK, Mehta NK. Valorisation of pineapple peel waste as natural surimi gel enhancer and its optimization in Nile tilapia (Oreochromis niloticus) surimi gels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62283-62295. [PMID: 37639097 DOI: 10.1007/s11356-023-29527-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
This investigation explored the preparation of surimi gel enhancer from pineapple peel waste, hugely generated by industries and spreading serious environment pollutions. The peel extracted with 100% ethanol had higher bioactive and antioxidant attributes, which was subsequently fortified in tilapia surimi at levels of 0.20%-1.20%, w/w to improve its physiochemical, textural, protein structural and sensorial properties. Our finding demonstrated that surimi gels enriched with 0.80% ethanolic pineapple peel extract (PAPE) exhibited significant (p<0.05) improvement in water holding capacity, breaking force, gel strength, and other textural properties and sensory attributes. Furthermore, the surimi gels fortified with 0.80% PAPE exhibited the elevated levels of hydrogen and hydrophobic interactions, while sulfhydryl and free amino acid contents demonstrated a contrasting trend. The FTIR spectra displayed that the incorporation of PAPE influenced the secondary structure of the protein, as evidenced by shifts in the α-helix to β-sheet peaks. In addition, 0.80% PAPE added gels displayed a compact, uniform, and organized microstructure, featuring small cavities. In summary, the fortification of tilapia surimi gels with 0.80% PAPE could improve gelling and other technological properties with higher sensory scores. This study offers an effective approach to utilize the pineapple peel as a gel enhancer additive for the development of functional surimi and surimi-based products enriched with bioactive compounds.
Collapse
Affiliation(s)
- Sanjeev Sharma
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Ranendra Kumar Majumdar
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India
| | - Naresh Kumar Mehta
- Department of Fish Processing Technology and Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, 799210, India.
| |
Collapse
|
2
|
Sharma S, Majumdar RK, Mehta NK. Manipulation of protein structure and bonding pattern to improve the gelling and textural quality of surimi gels from silver carp: incorporation of mosambi (Citrus limetta) peel extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6871-6883. [PMID: 37309565 DOI: 10.1002/jsfa.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND This investigation focused on the use of mosambi peel extract (MPE) fortification (at 0% to 1.50%, w/w) in silver carp surimi to improve the gelling, textural, and other physicochemical properties of the surimi. RESULTS The peels were extracted in ethanol (40-100% concentrations, v/v) and water. It was found that 100% ethanol had significantly (P < 0.05) higher yield and total phenolic, flavonoid, and tannin content. The fortification of MPE at optimum level (0.75%) improved the breaking force (55.1%) and gel strength (89.9%) significantly (P < 0.05) in comparison with 0% MPE gel samples. Moreover, 0.75% MPE-fortified gels had higher hydrogen and hydrophobic bonds, higher water-holding capacity, and lower sulfhydryl groups and free amino groups. The myosin heavy chain (MHC) bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) disappeared completely in the MPE-fortified gels. Fortification with MPE affected the secondary structures of protein as shifting of peaks was observed in Fourier-transform infrared (FTIR) spectra. Scanning electron microscopy (SEM) images showed relatively organized finer and denser gel networks in MPE-treated gels. CONCLUSION The surimi gels fortified with 0.75% MPE demonstrated improved gelling properties, with an overall higher acceptability than the unfortified gels (0% MPE). The fortified gels also became enriched with bioactive polyphenols, which are generally not present in surimi. This study provides an efficient way to utilize mosambi peel to develop functional surimi and surimi-based products with improved gel ability. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sanjeev Sharma
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, India
| | | | - Naresh Kumar Mehta
- College of Fisheries, Central Agricultural University (Imphal), Lembucherra, India
| |
Collapse
|
3
|
Kim MS, Chang YH. Physicochemical, structural and in vitro gastrointestinal tract release properties of ι-carrageenan/sodium caseinate synbiotic microgels produced by double-crosslinking with calcium ions and transglutaminase. Food Chem 2023; 414:135707. [PMID: 36841104 DOI: 10.1016/j.foodchem.2023.135707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The aim of this study was to develop ι-carrageenan (ιC)/sodium caseinate (NaCas) synbiotic microgels loading Lacticasebacillus paracasei produced by double-crosslinking with calcium ions and different concentrations (0, 5, 10, and 15 U/g protein) of transglutaminase (TGase). The synbiotic microgels were coated/filled with pectic oligosaccharide (POS). Field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) analyses indicated that L. paracasei was successfully microencapsulated in synbiotic microgels. In Fourier transform infrared (FT-IR) analysis, the new formation of covalent and ionic crosslinking was observed in double-crosslinked synbiotic microgels. The encapsulation efficiency of L. paracasei was significantly increased from 87.82 to 97.68 % by increasing the concentration of TGase from 0 to 15 U/g protein, respectively. After exposure to simulated gastric fluid for 2 h and simulated intestinal fluid for 4 h, the survival rate of L. paracasei was significantly increased as the concentration of TGase increased.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Díaz-Montes E. Wall Materials for Encapsulating Bioactive Compounds via Spray-Drying: A Review. Polymers (Basel) 2023; 15:2659. [PMID: 37376305 DOI: 10.3390/polym15122659] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Spray-drying is a continuous encapsulation method that effectively preserves, stabilizes, and retards the degradation of bioactive compounds by encapsulating them within a wall material. The resulting capsules exhibit diverse characteristics influenced by factors such as operating conditions (e.g., air temperature and feed rate) and the interactions between the bioactive compounds and the wall material. This review aims to compile recent research (within the past 5 years) on spray-drying for bioactive compound encapsulation, emphasizing the significance of wall materials in spray-drying and their impact on encapsulation yield, efficiency, and capsule morphology.
Collapse
Affiliation(s)
- Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticoman, Ciudad de Mexico 07340, Mexico
| |
Collapse
|
5
|
Gómez-Guillén MC, Pérez-García S, Alemán A, López-Caballero ME, Sotelo CG, Montero MP. Development of a Ready-to-Eat Fish Product Enriched with Fish Oil Entrapped in a κ-Carrageenan Egg White Fish Protein Hydrolysate Dry Powder. Foods 2023; 12:2272. [PMID: 37297516 PMCID: PMC10252189 DOI: 10.3390/foods12112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
This work describes the development of a ready-to-eat (RTE) product based on an equal mixture of fish mince from three undervalued fish species with different fat contents and protein gelling capacity, which was enriched with fish oil entrapped in a κ-carrageenan egg white fish protein hydrolysate powder, obtained by either spray drying (SD) or heat drying (HD) at 80 °C (HD80). Previously, the spray-dried (SD) powder and heat-dried powders obtained at 45 °C, 60 °C and 80 °C (HD45, HD60 and HD80) were characterised in terms of water solubility, lipid oxidation (TBARS), hygroscopicity and ζ potential. All HD powders showed higher hygroscopicity and lower TBARS than the SD powder. The dry powder was incorporated into a blend composed of salt-ground batter and raw mince to improve binding and textural properties. Changes in water-holding capacity, colour, shear strength and microorganisms were monitored during the processing steps. The RTE product presented a high protein content and a noticeable amount of long-chain ω-3 fatty acids. The use of undervalued fish species together with fish oil and a protein hydrolysate from fish waste contribute to improving the sustainability of fishery resources, being conducive to obtaining a potentially functional RTE product.
Collapse
Affiliation(s)
- María Carmen Gómez-Guillén
- Department of Meat and Fish Products, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 6, 28040 Madrid, Spain; (M.C.G.-G.); (S.P.-G.); (A.A.); (M.E.L.-C.)
| | - Selene Pérez-García
- Department of Meat and Fish Products, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 6, 28040 Madrid, Spain; (M.C.G.-G.); (S.P.-G.); (A.A.); (M.E.L.-C.)
| | - Ailén Alemán
- Department of Meat and Fish Products, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 6, 28040 Madrid, Spain; (M.C.G.-G.); (S.P.-G.); (A.A.); (M.E.L.-C.)
| | - María Elvira López-Caballero
- Department of Meat and Fish Products, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 6, 28040 Madrid, Spain; (M.C.G.-G.); (S.P.-G.); (A.A.); (M.E.L.-C.)
| | - Carmen G. Sotelo
- Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - María Pilar Montero
- Department of Meat and Fish Products, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 6, 28040 Madrid, Spain; (M.C.G.-G.); (S.P.-G.); (A.A.); (M.E.L.-C.)
| |
Collapse
|
6
|
Abd El‐Ghany NA, Abu Elella MH. Overview of Different Materials Used in Food Production. MATERIALS SCIENCE AND ENGINEERING IN FOOD PRODUCT DEVELOPMENT 2023:1-25. [DOI: 10.1002/9781119860594.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Piao X, Li J, Zhao Y, Guo L, Zheng B, Zhou R, Ostrikov K(K. Oxidized cellulose nanofibrils-based surimi gel enhancing additives: Interactions, performance and mechanisms. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
The role of the drying method on fish oil entrapment in a fish muscle protein ̶ κ-carrageenan ̶ fish protein hydrolysate wall matrix and the properties of colloidal dispersions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
De Aguiar Saldanha Pinheiro AC, Martí-Quijal FJ, Barba FJ, Tappi S, Rocculi P. Innovative Non-Thermal Technologies for Recovery and Valorization of Value-Added Products from Crustacean Processing By-Products-An Opportunity for a Circular Economy Approach. Foods 2021; 10:2030. [PMID: 34574140 PMCID: PMC8465042 DOI: 10.3390/foods10092030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
The crustacean processing industry has experienced significant growth over recent decades resulting in the production of a great number of by-products. Crustacean by-products contain several valuable components such as proteins, lipids, and carotenoids, especially astaxanthin and chitin. When isolated, these valuable compounds are characterized by bioactivities such as anti-microbial, antioxidant, and anti-cancer ones, and that could be used as nutraceutical ingredients or additives in the food, pharmaceutical, and cosmetic industries. Different innovative non-thermal technologies have appeared as promising, safe, and efficient tools to recover these valuable compounds. This review aims at providing a summary of the main compounds that can be extracted from crustacean by-products, and of the results obtained by applying the main innovative non-thermal processes for recovering such high-value products. Moreover, from the perspective of the circular economy approach, specific case studies on some current applications of the recovered compounds in the seafood industry are presented. The extraction of valuable components from crustacean by-products, combined with the development of novel technological strategies aimed at their recovery and purification, will allow for important results related to the long-term sustainability of the seafood industry to be obtained. Furthermore, the reuse of extracted components in seafood products is an interesting strategy to increase the value of the seafood sector overall. However, to date, there are limited industrial applications for this promising approach.
Collapse
Affiliation(s)
- Ana Cristina De Aguiar Saldanha Pinheiro
- Department of Agricultural and Food Science, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich, 60, 47522 Cesena, FC, Italy; (A.C.D.A.S.P.); (S.T.); (P.R.)
| | - Francisco J. Martí-Quijal
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain;
| | - Silvia Tappi
- Department of Agricultural and Food Science, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich, 60, 47522 Cesena, FC, Italy; (A.C.D.A.S.P.); (S.T.); (P.R.)
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci, 336, 47521 Cesena, FC, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Science, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich, 60, 47522 Cesena, FC, Italy; (A.C.D.A.S.P.); (S.T.); (P.R.)
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci, 336, 47521 Cesena, FC, Italy
| |
Collapse
|
10
|
Hariyadi DM, Purwanti T, Maulydia D, Estherline CA, Hendradi E, Rahmadi M. Performance and drug deposition of kappa-carrageenan microspheres encapsulating ciprofloxacin HCl: Effect of polymer concentration. J Adv Pharm Technol Res 2021; 12:242-249. [PMID: 34345602 PMCID: PMC8300320 DOI: 10.4103/japtr.japtr_197_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 05/20/2021] [Indexed: 11/04/2022] Open
Abstract
It has been known that in respiratory disease, antibiotic is selected for respiratory diseases or lung infections and this research focused on ciprofloxacin HCl as a model. The aim was to evaluate the effect of kappa-carrageenan polymer concentrations on characteristics, release, and drug deposition in the lung. Ciprofloxacin HCl-carrageenan microspheres were produced with kappa carrageenan (0.75%, 0.50%, and 0.25%) as polymer and KCl (1.5%) as crosslinker. Physical characteristics were included morphology, size, moisture content, swelling index, mucoadhesivity, drug loading, entrapment efficiency, and yield. Freeze-dried microspheres were inhaled by animal, and drug deposition was observed. Results showed that dried, smooth, and spherical microspheres of size of 1.34 to 1.70 μm and loading of 15.63% to 38.72%. Entrapment efficiency and yield were 25.38%-51.61% and 52.53%-63.19%, respectively. Mucoadhesivity was 0.0059-0.0096 kg force, and release in 24 h was 74.38%-81.02%. Release kinetics demonstrated Higuchi mechanism. Increasing carrageenan concentration affected size, loading, and efficiency but did not influence adhesivity, yield, and release. Higher amount of polymer caused the lower deposit on the lungs. Respirable size of ciprofloxacin HCl-kappa carrageenan microspheres was successfully achieved target site and prolonged residence time in lungs.
Collapse
Affiliation(s)
- Dewi Melani Hariyadi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Tutiek Purwanti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Dinda Maulydia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Cindy Alicia Estherline
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Esti Hendradi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|